

JWBK023-FM JWBK023-Keedwell April 5, 2005 23:30 Char Count= 0

Intelligent
Bioinformatics
The application of artificial intelligence
techniques to bioinformatics problems

Edward Keedwell
and
Ajit Narayanan
School of Engineering, Computer Science and Mathematics
University of Exeter, UK

iii

JWBK023-FM JWBK023-Keedwell April 5, 2005 23:30 Char Count= 0

ii

JWBK023-FM JWBK023-Keedwell April 5, 2005 23:30 Char Count= 0

Intelligent
Bioinformatics

i

JWBK023-FM JWBK023-Keedwell April 5, 2005 23:30 Char Count= 0

ii

JWBK023-FM JWBK023-Keedwell April 5, 2005 23:30 Char Count= 0

Intelligent
Bioinformatics
The application of artificial intelligence
techniques to bioinformatics problems

Edward Keedwell
and
Ajit Narayanan
School of Engineering, Computer Science and Mathematics
University of Exeter, UK

iii

JWBK023-FM JWBK023-Keedwell April 5, 2005 23:30 Char Count= 0

Copyright C© 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except under the terms of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency
Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of
the Publisher. Requests to the Publisher should be addressed to the Permissions Department,
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,
England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks.
All brand names and product names used in this book are trade names, service marks,
trademarks or registered trademarks of their respective owners. The Publisher is not
associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold on the understanding that the Publisher is not engaged
in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark,
Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloguing-in-Publication Data

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 470 02175 6

Typeset in 10.5/13.5pt Sabon by TechBooks, New Delhi, India
Printed and bound in Great Britain by TJ International Ltd., Padstow, Corwall
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

iv

http://www.wileyeurope.com
http://www.wiley.com

JWBK023-FM JWBK023-Keedwell April 5, 2005 23:30 Char Count= 0

Contents

Preface ix

Acknowledgement xi

PART 1 INTRODUCTION 1

1 Introduction to the Basics of Molecular Biology 3
1.1 Basic cell architecture 3
1.2 The structure, content and scale of deoxyribonucleic acid (DNA) 4
1.3 History of the human genome 9
1.4 Genes and proteins 10
1.5 Current knowledge and the ‘central dogma’ 21
1.6 Why proteins are important 23
1.7 Gene and cell regulation 24
1.8 When cell regulation goes wrong 26
1.9 So, what is bioinformatics? 27

1.10 Summary of chapter 28
1.11 Further reading 29

2 Introduction to Problems and Challenges
in Bioinformatics 31

2.1 Introduction 31
2.2 Genome 31
2.3 Transcriptome 40
2.4 Proteome 50
2.5 Interference technology, viruses and the immune system 57
2.6 Summary of chapter 63
2.7 Further reading 64

v

JWBK023-FM JWBK023-Keedwell April 5, 2005 23:30 Char Count= 0

vi CONTENTS

3 Introduction to Artificial Intelligence and
Computer Science 65

3.1 Introduction to search 65
3.2 Search algorithms 66
3.3 Heuristic search methods 72
3.4 Optimal search strategies 76
3.5 Problems with search techniques 83
3.6 Complexity of search 84
3.7 Use of graphs in bioinformatics 86
3.8 Grammars, languages and automata 90
3.9 Classes of problems 96

3.10 Summary of chapter 98
3.11 Further reading 99

PART 2 CURRENT TECHNIQUES 101

4 Probabilistic Approaches 103
4.1 Introduction to probability 103
4.2 Bayes’ Theorem 105
4.3 Bayesian networks 111
4.4 Markov networks 116
4.5 Summary of chapter 125
4.6 References 126

5 Nearest Neighbour and Clustering Approaches 127
5.1 Introduction 127
5.2 Nearest neighbour method 130
5.3 Nearest neighbour approach for secondary structure protein

folding prediction 132
5.4 Clustering 135
5.5 Advanced clustering techniques 138
5.6 Application guidelines 144
5.7 Summary of chapter 145
5.8 References 146

6 Identification (Decision) Trees 147
6.1 Method 147
6.2 Gain criterion 152
6.3 Over fitting and pruning 157
6.4 Application guidelines 160
6.5 Bioinformatics applications 163
6.6 Background 169

JWBK023-FM JWBK023-Keedwell April 5, 2005 23:30 Char Count= 0

CONTENTS vii

6.7 Summary of chapter 170
6.8 References 170

7 Neural Networks 173
7.1 Method 173
7.2 Application guidelines 185
7.3 Bioinformatics applications 187
7.4 Background 192
7.5 Summary of chapter 193
7.6 References 193

8 Genetic Algorithms 195
8.1 Single-objective genetic algorithms – method 195
8.2 Single-objective genetic algorithms – example 202
8.3 Multi-objective genetic algorithms – method 205
8.4 Application guidelines 207
8.5 Genetic algorithms – bioinformatics applications 210
8.6 Summary of chapter 217
8.7 References and further reading 217

PART 3 FUTURE TECHNIQUES 219

9 Genetic Programming 221
9.1 Method 221
9.2 Application guidelines 230
9.3 Bioinformatics applications 232
9.4 Background 236
9.5 Summary of chapter 236
9.6 References 237

10 Cellular Automata 239
10.1 Method 239
10.2 Application guidelines 245
10.3 Bioinformatics applications 247
10.4 Background 251
10.5 Summary of chapter 252
10.6 References and further reading 252

11 Hybrid Methods 255
11.1 Method 255
11.2 Neural-genetic algorithm for analysing gene expression data 256
11.3 Genetic algorithm and k nearest neighbour hybrid for

biochemistry solvation 262

JWBK023-FM JWBK023-Keedwell April 5, 2005 23:30 Char Count= 0

viii CONTENTS

11.4 Genetic programming neural networks for determining
gene – gene interactions in epidemiology 265

11.5 Application guidelines 268
11.6 Conclusions 268
11.7 Summary of chapter 269
11.8 References and further reading 269

Index 271

JWBK023-FM JWBK023-Keedwell April 5, 2005 23:30 Char Count= 0

Preface

It is widely recognized that the field of biology is in the midst of a ‘data
explosion’. A series of technical advances in recent years has increased
the amount of data that biologists can record about different aspects of
an organism at the genomic, transcriptomic and proteomic levels. This
data is, of course, vital to advancing our knowledge. In recent years, the
discipline of bioinformatics has allowed biologists to make full use of the
advances in computer science and computational statistics in analysing
this data. However, as the volume of data grows, the techniques used must
become more sophisticated to cater for large-scale data and noise. Also,
given the growth in biological data, there is a need to extract information
that was not previously known from these databases to supplement cur-
rent knowledge. Large databases may contain interesting patterns that, if
identified and authenticated by further laboratory and clinical work, can
lead to novel theories about the causes of various diseases and also possi-
bly to new drugs for their treatment. The discipline of bioinformatics has
reached the end of its first phase, and the motivation behind this book
is to characterize the principles that may underlie second phase bioin-
formatics. That is, second phase bioinformatics is when the discipline,
instead of being informed by just computer science and computational
statistics, is also informed by artificial intelligence techniques.

As we show in this book, there are problems in bioinformatics and
many other sciences that cannot be solved satisfactorily even with the
fastest computers. Clearly, a more ‘intelligent’ approach is required to
solve these increasingly difficult bioinformatics problems, such as gene
expression analysis and protein structure prediction. This book attempts
to address this by looking at the latest advances in artificial intelligence
technology as applied to computational problems in biology. Artificial
intelligence methods are often based on the ways in which humans solve

ix

JWBK023-FM JWBK023-Keedwell April 5, 2005 23:30 Char Count= 0

x PREFACE

search and optimization problems, or how nature has solved its own
problems, for example by using the principles of ‘survival of the fittest’
in evolutionary computation.

This book is divided into three parts, each containing a number of
chapters. These parts are designed to allow readers to access the mate-
rial most relevant to them. The first part, Introduction, introduces the
material necessary to understand the technology and biology included
in the later chapters. We recognize that bioinformatics is highly cross-
disciplinary and therefore some, all or none of these chapters may be
relevant to the reader, depending on their background. The next part,
Current Techniques, describes the established artificial intelligence tech-
niques in bioinformatics including probabilistic, nearest neighbour and
genetic algorithm approaches. The final part, Future Techniques, is in-
tended to give the reader an impression of the latest thinking in the area
of intelligent bioinformatics. Some of these approaches may not have
been widely applied to problems in bioinformatics, but algorithms such
as genetic programming and various hybrid approaches can be expected
to make a big impact in this domain if experience in other areas of science
and technology is anything to go by.

In short, this book has been written to engage and interest readers from
many disciplines. Biologists are provided for in that there is a full intro-
duction to the challenges for computer science, and computer scientists
should also find the chapters on biology and bioinformatics informative.
Practicing bioinformaticians are also likely to find the book enlightening,
as much of the material has previously only been included in specialist
publications and a collection such as this provides a single resource for
many intelligent problem-solving techniques in bioinformatics. However,
as with any book of this type, not every technique can be included due
to space restrictions and apologies are offered to researchers whose own
favourite analytical techniques are not covered in this book.

Edward Keedwell
Ajit Narayanan

JWBK023-FM JWBK023-Keedwell April 5, 2005 23:30 Char Count= 0

Acknowledgements

The authors would like to thank everyone involved with producing this
book including staff at the Department of Computer Science and Centre
for Water Systems at the University of Exeter, in particular Godfrey Wal-
ters, Dragan Savic and Soon-Thiam Khu. In addition to this, we would
like to thank Bjorn Olsson for his contribution to the tutorials on which
this book is based, and Laetitia Jourdan for her helpful comments. Also,
we would like to thank the many MSc students on the Bioinformatics
programme at the University of Exeter, who contributed towards some
of the material for this book. Finally we would also like to thank the
editorial and production staff at Wiley, in particular Joan Marsh, An-
drea Baier and Robert Hambrook for making this book possible.

We are grateful to WoltersKluwer Health for permission to adapt and
re-use Figures 2.10, 6.3, 7.1, 7.2 and 7.3 and Table 5.1 from ‘Artificial
intelligence techniques for bioinformatics’, A. Narayanan, E. C. Keedwell
and B. Olsson, Applied Bioinformatics 2002: 1(4) 191–222.

Dedications

Ed Keedwell – This book is dedicated to my family Rob, Lyn, Rich and
Loveday, to Kate, and in memory of Alex Larigo.

Ajit Narayanan – This book is dedicated to Lucy, Belinda and Kieran,
my mother Janaki, my brother Ramesh and sister Seetha.

xi

JWBK023-FM JWBK023-Keedwell April 5, 2005 23:30 Char Count= 0

xii

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

Part 1
Introduction

1

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

2

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

1
Introduction to the Basics
of Molecular Biology

1.1 Basic cell architecture

A cell, typically 10–30 millionths of a metre (10–30µm) across for hu-
mans, contains many specialized structures called organelles (Figure 1.1).
The cell membrane controls the passage of substances into and out of the
cell and encloses cell organelles as well as cell substances; the cytoplasm
serves as a fluid container for cell organelles and other cell substances
as well as helping in the transport of substances within the cell; the nu-
cleus directs all cell activity and carries hereditary information; the en-
doplasmic reticulum serves as a transport network and storage area for
substances within the cell; the ribosome manufactures different kinds of
cell protein; the Golgi apparatus packages protein for storage or trans-
port out of the cell; the lysosome digests or breaks down food materials
into simpler parts and removes waste materials from the cell; the mi-
tochondria serve as the power supply of the cell by producing ATP –
adenosine triphosphate – which is the source of energy for all cell
activities; microtubules serve as the support system or skeleton of the
cell; and microfilaments assist in cell motility. Each organelle performs
one or more special task(s) to keep the cell alive.

In addition to this intracellular (within cell) architecture, there is also
an intercellular (between cell) architecture: cells form tissue (aggregations
of similar cells that perform some subfunction), which in turn combines
with other tissues to form organs (aggregation of subfunctions to perform

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd

3

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

4 INTRODUCTION TO THE BASICS OF MOLECULAR BIOLOGY

Cell

DNA

Golgi apparatus
Polypeptide chain
(20 amino acids)

Protein

mRNA

(b) Translation

Ribosome

(c) Enzymes, proteins
 (hundreds of amino acids)

Nucleus

(a) Transcription

Figure 1.1 An overview of a typical human cell

an overall function), which in turn together form an organism (aggrega-
tion of all functions to keep the multicellular organism alive). The rest of
this chapter deals with just two of these organelles, the nucleus and the
ribosomes, and the processes within a cell that links them together.

1.2 The structure, content and scale
of deoxyribonucleic acid (DNA)

DNA and chromosomes

All the information directing every cell function is stored in large DNA
molecules found in the nucleus. A cell cannot function without DNA.
The information it contains must somehow be made available to the rest
of the cell as well as being passed on to all new cells. Although each
cell contains the full complement of DNA, through some process which
is not yet clearly understood certain parts of the DNA are switched on

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

THE STRUCTURE, CONTENT AND SCALE OF DEOXYRIBONUCLEIC ACID 5

or off within cells, resulting in different types of cell producing different
proteins for normal growth and functioning of the organism as a whole.

The human body consists of between 30 to 80 trillion cells, where
one trillion = 1012, i.e. one thousand billion, where one billion equals
one thousand million. What is shown in Figure 1.1 is a eukaryote cell,
which has a membrane-bound nucleus. The human body has about
200 different types of eukaryote cell. The process of transcription (Fig-
ure 1.1(a)) starts with the double-stranded DNA opening up to reveal
bases coding for a gene. A copy of the gene is made called messenger RNA
(mRNA) which leaves the nucleus. The double-stranded DNA closes af-
ter transcription. At ribosomes, the process of translation starts (Fig-
ure 1.1(b)) whereby three copied bases at a time (codon) are mapped
onto one amino acid. The mRNA is broken up and may re-enter the nu-
cleus for further mRNA transcription. The growing sequence of amino
acids (polypeptide sequence) may be amended by the Golgi apparatus
before the final production of enzymes, proteins and other translated
products (Figure 1.1 (c)).

The DNA in the nucleus takes the form of large molecules called chro-
mosomes made up of combinations of four types of nucleotides – adenine,
guanine, thymine and cytosine (labelled ‘A’, ‘G’, ‘T’ and ‘C’, respectively).
Chromosomal structure can be described at different levels. At the lowest
level, single strands of DNA are paired with their complementary bases
to form double strands (about two billionths of a metre (2ηm) wide).
These double strands form strings of chromatin about 11ηm wide that
are packed tightly into 30ηm-wide chromatin fibre. Chromatin fibre is
itself densely packed into a section of chromosome about 300ηm wide
which again is packed into condensed sections of chromosome about
700ηm wide. Finally, chromosome sections are joined together at the
centromere to form an entire chromosome about 1400ηm (1.4µm, or
0.0014mm) wide.

The extreme small scale of DNA and its structure means that it can-
not be observed directly. Since the largest magnification that can be seen
through an optical microscope is 400× and the closest that two dis-
tinct spots can be resolved is 0.2 mm, if a chromosome can be seen at all
through an optical microscope using artificial or natural light it will be as
a fuzzy image. Lightwaves with shorter wavelengths (such as blue or ul-
traviolet) can be used to increase resolution (the resolution limit is about
0.45 times the wavelength), but then special techniques are required to
capture the image, since such short wavelengths are beyond visual capa-
bility. Light microscopy can be used to observe a cell but still cannot make
out the organelles with clarity. One of the most popular techniques is

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

6 INTRODUCTION TO THE BASICS OF MOLECULAR BIOLOGY

transmission electron microscopy (TEM), where electrons are beamed
through the sample and an image produced resulting from the interaction
of the electrons with the sample. TEM can resolve organelles and other
subcellular structures but not the content of chromosomes. In other
words, it is likely that chromosome content will not be observed directly
at the level of bases, which means that DNA sequences will never be
observed directly. Instead, indirect methods for observing and measuring
DNA must be used.

It is estimated that the DNA in each human cell contains about six or
seven billion nucleotides, spread across 46 chromosomes (discrete molec-
ular structures of DNA), each one of which takes the shape of a double
helix. If all the DNA in one cell were stretched end to end, the length
is estimated to be about 2 m. That is, each DNA chromosome is about
50 000 times shorter than its extended length.

Nucleotides are conventionally portrayed as shapes that lock onto each
other when paired on the two strands that make up the double-helix
structure of a chromosome. Complementary base pairing is represented
in Figure 1.2(a) and (b), with T on one strand always being paired with
A on the other strand, and C with G. Each strand has directionality (the
direction in which nucleotides code for genes), known as 5′ (5-prime) or
3′. That is, the strands run in the opposite direction to each other and are
‘anti-parallel’. In Figure 1.2(c), the nucleotides making up a gene have
a direction from the 5′ to the 3′ end (left-to-right for the ‘top’ strand,

T A

G C

(a)
(c)

5′

3′

3′

5′

3′

(b)

5′

5′

Double helix

3′

Figure 1.2 The double-helix structure

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

THE STRUCTURE, CONTENT AND SCALE OF DEOXYRIBONUCLEIC ACID 7

right-to-left for the ‘bottom’ strand). Each nucleotide is a molecule con-
sisting of a five-carbon sugar (deoxyribose for DNA), a phosphate group,
and a nitrogenous base (a ring compound containing nitrogen), with each
carbon being given a number 1′ to 5′. Nucleotides form a chain when
phosphodiester linkages are formed between the sugar portions of the
molecules. As a result of the phosphates being linked from the 5′ carbon
on one sugar to the 3′ carbon on the next, the DNA sequence has a free
5′ carbon (no nucleotide attached) at one end and a free 3′ carbon at
the other end. These free carbon numbers are then used to signify the
directionality of the sequence.

Types of cell

Eukaryotic cells mainly appear in multicellular organisms (e.g. plants,
animals) and are distinguished by having a clearly designated nucleus
containing DNA structured into chromosomes, while prokaryotic cells
(single cell organisms) have no such nucleus and their DNA is stored
in one, usually circular, molecule. Prokaryotic cells are usually called
bacteria and represent the simplest life forms. There are three classes of
bacteria. Eubacteria are the most common type and can cause disease
in humans either by directly producing toxins harmful to us or by being
infected by bacterial viruses that then cause the bacteria in us to produce
harmful toxins. In addition to the trillions of eukaryotic cells that make
up a human, human bodies also tolerate a large number of bacteria that
produce useful proteins, e.g. for breaking down some types of food, that
human DNA could not otherwise manufacture. Archaebacteria are typ-
ically found in hostile (usually hot, acidic and oxygenless) environments
and are assumed to be, or descended from, among the oldest living or-
ganisms on this planet, since the early Earth would not have contained
oxygen and would have been a hot place. Cyanobacteria use photosyn-
thesis (the process of converting energy in sunlight into chemicals used
by living systems) and are believed to be the source of chloroplasts in
plants. The remainder of this book will concentrate on eukaryotic cells,
such as those found in multicellular creatures.

The human body is made up of large numbers of about 200 different
types of eukaryotic cell, such as nerve cells (neurons) for communica-
tion and control, muscle cells for producing mechanical force, and sen-
sory cells such as those in the eye and skin. Since all humans (and other
multicellular organisms) start as one fertilized egg cell, it is one of the
mysteries of modern biology as to why, after division like a prokaryotic

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

8 INTRODUCTION TO THE BASICS OF MOLECULAR BIOLOGY

cell, the subsequent cells remain together to cooperate for further division
and specialization into all of the different types of cell, until a full-grown
human develops. Most prokaryotic cells, after division, go their own way
and lead independent lives.

DNA, the genome and genes

For human and other eukaryotic cells, two polynucleotide chains (that
is, two sequences consisting of many different occurrences of the four
neucleotides) form the DNA double helix, with all the bases on the inside
of the helix and the sugar-phosphate backbones on the outside (Fig-
ure 1.2). Under normal cellular conditions, adenine and guanine (purines)
always pair with thymine and cytosine (pyramidines), respectively and
vice versa. The complete set of DNA in an organism’s cell is its genome. A
eukaryotic nucleus contains a number of chromosomes, each of which is
a double-helix containing hundreds of thousands of bases on anti-parallel
strands. In other words, while the strands are parallel in a chromosome,
they run in an opposite direction to each other. One strand is read from
‘left-to-right’, or ‘top-to-bottom’, and its complement is read from ‘right-
to-left’, or ‘bottom-to-top’.

So far, the assumption is that a eukaryotic cell contains the full set of
chromosomes, and this is true for about 99.99 per cent of all cells in the
human body. However, before a normal eukaryotic cell can come into
being it has to be created. A sex cell for humans contains 23 chromo-
somes, consisting of about 3.5 billion bases in total. A sex cell (haploid) is
different from a normal cell in that it contains only half the complement
of chromosomes required to form a normal (diploid cell). Only when two
sex cells merge will a normal cell consisting of 46 chromosomes result.
A sex cell for goldfish contains 47 chromosomes (94 chromosomes for a
normal goldfish cell), for rice 12, for a fruit fly four, for a guinea pig 32.

A gene is defined to be a sequence of DNA or bases that code for a
specific function/protein. However, a gene can have more than one form
or version. So, while there may be a gene for, say, producing hair of a
certain colour (a gross oversimplification), that gene will have different
alleles, such as producing brown hair or blonde hair. A gene is like a
variable that can take different values, to use a computational metaphor.
It is not known for sure how many human genes are capable of having
different allelic values or how many different allelic values exist for those
genes that can vary. Some of these differences in allelic values are strongly
associated with diseases, such as one particular type of diabetes where a

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

HISTORY OF THE HUMAN GENOME 9

gene which contributes to the production of insulin for breaking down
glucose in the blood has a different form to the normal form or version
of the gene. Other differences in allelic values provide normal variation
between individuals’ however. It is difficult to identify a genuine allelic
difference when comparing the same gene across two individuals; the
difference can be just one base in a multithousand-base gene sequence.
Since the content of genes cannot be observed directly, only indirect ways
of identifying differences between individuals for the same gene can be
used, which leads to problems of knowing where the differences may be
and finding methods for checking for the existence of these differences.

As stated earlier it is estimated that there are several trillion (between
30 trillion and 80 trillion) cells in the human body (for skin, muscles,
liver, blood, heart, brain, etc.). Each such cell contains the full set of 46
chromosomes inherited from the mother and father (23 in each case, via
sex cells). It is also estimated that one set of 23 chromosomes code for
about 30 000 genes for humans. On average, about 100 000–150 000
bases are required for coding a gene, although this figure varies greatly
from a few hundred to a few hundred thousand. Several thousand genes
will on average reside on each chromosome. A genome is defined to be
the complete set of chromosomes inherited from one parent.

1.3 History of the human genome

The task of sequencing all the bases of the human genome is called the
human genome project, which originated in the early 1980s with Gen-
Bank when US Department of Energy technicians entered sequences of
As, Gs, Cs and Ts from journals into databases using special keyboards.
New protocols subsequently allowed researchers to enter sequences via
telephone, and later GenBank was transferred to the National Institute
for Biotechnology Information (NCBI). In 1990, the Human Genome
Project (HGP) was launched as a publicly-funded consortium consist-
ing of four large sequencing centres in the USA, the Sanger Centre in
Cambridge, UK, and various laboratories in Japan, France, Germany
and China. Before the project was completed, in Spring 2000 Celera Ge-
nomics announced that they had a complete draft of the human genome.
While the HGP adopted a systematic method for ‘sequencing’ (identify-
ing the nucleotides along all the chromosomes of) the human genome
section by section, Celera adopted a ‘shotgun’ approach, whereby they
fragmented the genome into small, easily sequenced stretches and then
reconstructed the genome through proprietary algorithms. Increases in

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

10 INTRODUCTION TO THE BASICS OF MOLECULAR BIOLOGY

computational power through the 1990s made Celera’s approach possi-
ble. Celera used just one anonymous person’s DNA, whereas the HGP
required cross-checking with several people’s DNA. Also, Celera repeated
the sequencing three times, whereas HGP required more repetitions.

Initially and during the early 1990s, it was thought that the HGP would
find 80 000 genes. As the HGP progressed, this figure was revised down
to 20 000 to 30 000 genes. A rough calculation indicates that, if there are
3.5 billion bases on 23 chromosomes and 30 000 genes, then about
120 000 bases are required per gene on average. However, it is now
estimated that 98–99 per cent of DNA in humans is ‘redundant’ (does
not code for any function). Also, it is estimated that up to 99.9 per cent
of one person’s genes match another random person’s perfectly. That is,
any two people taken at random share the very same DNA sequence (al-
lelic values) for nearly every single one of their genes, but the remaining
0.1 per cent vary. If 30 000 genes are assumed, then 0.1 per cent is 30,
that is, there are still over a billion ways (230 = 1 073 741 824) that two
people can differ from each other. This is assuming that each gene has
a binary function (on/off, high/low, dark/fair, etc), whereas genes can be
expected to be multivariate (take many values). For instance, if there are
on average three different forms for each gene, there are still over 205 bil-
lion ways that two people can differ from each other, more than enough
to code for a difference between any two humans currently living (the
world’s population is currently estimated to be about six billion). Also, if
the estimate of how many genes humans share identically with each other
is just a fraction lower, say 99.8 per cent, then there is even more genetic
variability possible. These differences between values for a specific gene
are called polymorphisms and the physical location of a specific gene on
chromosomes is called its locus.

There is also increasing interest in the ‘redundant’ or ‘junk’ DNA,
that is, DNA which is believed not to code for any protein. It is not
clear whether such sections of DNA are the remains of previously useful
DNA that now have no function, or whether non-coding DNA provides
a structural aid to help stabilize chromosomes and the nucleus.

1.4 Genes and proteins

Genes code for various products that are used by the cells making up the
tissue of the organism. These products are called proteins and they have
two primary functions: structural, such as helping to form muscle, hair
and microtubules, and enzymatic, such as the production of enzymes

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

GENES AND PROTEINS 11

for starting various chemical reactions in the cell. Proteins therefore
contribute to biological structure and function. Proteins also have three
other functions: they can carry signals, they can transport molecules such
as oxygen and they can regulate cell processes, such as defence mecha-
nisms. The process by which genes are made into proteins is started by
RNA polymerase coming into contact with a chromosome and identify-
ing the start point of a gene. These molecules open up the double helix
structure to expose the DNA strand making up the gene, and a comple-
mentary copy of the gene is made in the direction in which the gene is
meant to be read. The process of copying genes into mRNA is called tran-
scription, and the process of converting the mRNA into protein is called
translation.

Transcription starts with the double-helix unwinding Figure 1.3(a) and
exposing bases that represent the start of a gene. mRNA is then formed,
whereby a complementary copy of the gene is made. Since transcription
proceeds in the 3′ to 5′ direction (more details follow later), the mRNA
has opposite ‘polarity’, that is, the start of the gene is now at the 5′ end of
the mRNA (Figure 1.3(b)). Introns, or parts of the gene that do not code
for a protein, are removed, typically by the mRNA folding over itself
and forming loops that are cut off, leaving exons in the transcript. These
transcripts containing exons only can be further edited (Figure 1.3(c)) so
that alternative splice pathways for the same gene are formed, i.e. one
gene can give rise to many different transcripts.

Transcription

The transcription process consists of three stages: initiation, elongation
and termination. Regions of DNA which signal initiation are termed
promoters and lie ‘upstream’ of the start of the actual gene (Figure 1.4).
Initiation starts with molecules such as polymerase II enzymes finding
promoter regions upstream (towards the 3′ end of a strand) of a gene.
These regions consists of specific patterns of bases, known as the CAAT
box and TATA box. The start point of a gene is typically 25 bases down-
stream of the TATA box for eukaryotes. It is believed that there are two
regions of promoters. RNA polymerase II enzymes scan the helix looking
for these regions and, when found, bind tightly to the region further away
from the initiation point. The enzyme then binds to the second region
closer to the start point and opens up the helix while at the same time re-
leasing a factor which signals that mRNA should be formed. Elongation
is the process by which an mRNA copy of the genetic information is

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

12 INTRODUCTION TO THE BASICS OF MOLECULAR BIOLOGY

Free-floating
polymerase II

(a) 5' 3'

5'
3'

(b)

(c)

5' 3'

3'5'

Polymerase
unzips the
double helix

Exposed bases

mRNA

To ribosomes

Double
helix

mRNA splicing

mRNA Left exon

Left exon

Primary transcript

Splice pathway 1 Splice pathway 2

Right exon

Splicing enzyme

Right exon Left � right exon

Left � right exon

Intron

Intron removed

mRNA

A
G
C
T
Uracil

Figure 1.3 The process of transcription

actually made on the unravelled stretch of helix. Certain sequences may
cause a pause during this process. Termination is caused in one of two
ways. The first is a repeated sequence of bases that causes the mRNA to
fold over itself and therefore terminate the transcription process. Typi-
cally, a GC-rich (guanine followed by cytosine) sequence is sufficient to
terminate transcription. The second way is for a terminating factor to be
released.

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

. .
 .

G
 C

 T
 C

 C
 A

 A
 T

 C
 T

 .
. .

C
A

A
T

 b
o

x

3′
. .

 .
. .

 .

−8
0

O
th

er
 c

on
tr

ol
 e

le
m

en
ts

at
 p

os
it

io
n

up
 t

o
−2

00 Se
qu

en
ce

 e
le

m
en

ts
 o

f
th

e
pr

om
ot

er
 in

 a
ni

m
al

s
an

d
lo

w
er

 e
uk

ar
yo

te
s.

N
 in

di
ca

te
s

th
at

 a
ny

 o
f

th
e

fo
ur

 n
uc

le
ot

id
es

 m
ay

 o
cc

ur
 w

it
h

ap
pr

ox
im

at
e

eq
ua

l f
re

qu
en

cy
 a

t
th

at
 s

it
e.

. .
 .

G
 T

 T
 T

 G
 C

 T
 C

 C
 T

 N
 A

 C
 .

5′

+1
St

ar
t

po
in

t
R

es
t

of
ge

ne

. T
 A

 T
 A

 A
/T

 A
 .

T
A

T
A

 b
o

x

−2
5

Fi
gu

re
1.

4
T

he
in

it
ia

ti
on

st
ag

e

13

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

14 INTRODUCTION TO THE BASICS OF MOLECULAR BIOLOGY

The process of transcription therefore results in a complementary
copy of the gene, but there is one complication. C (cytosine) in DNA
is transcribed as G (guanine), and G as C. However, while A (adenine) is
transcribed to T (thymine), T is not transcribed to A. Instead, for tran-
scription, a fifth base called uracil or uradine (U), which is functionally
identical to adenine (A), is used. Faithful complementary base copying is
used instead for another process, replication, whereby the entire genetic
material of a cell is copied for cell division and the production of a new
copy of the cell (cloning), such as when a new skin cell is required from an
existing skin cell. Transcription therefore differs from replication in that
transcription involves the use of a fifth base, uracil, which is the comple-
mentary base to adenine (A). U does not occur in replicated DNA, and
T does not occur in mRNA.

As previously mentioned, at each nucleotide position along the double-
stranded DNA molecule, the nucleotides are complementary. This is be-
cause, chemically, A forms two hydrogen bonds with T and C forms three
hydrogen bonds with G. There is, however, a peculiar relationship bet-
ween the directionality of DNA strands and the type of strand involved.
One of the strands holds the information that represents a gene. This
strand is called the template or antisense strand (containing anti-codons,
to be described below). The other strand is called, confusingly, the cod-
ing or sense strand. The ‘sense’ and ‘anti-sense’ strands represent the
two strands of the double helix (Figure 1.5). Transcription uses the anti-
sense, or template, strand. Note that in replication a faithful copy of the
sense strand produces the anti-sense strand with appropriate direction,
and vice versa. The sense strand can therefore be regarded as containing
‘DNA codons’ (to be described later), and the anti-sense strand ‘DNA
anti-codons’. DNA codons and anti-codons are not to be confused with
mRNA codons, which result from the transcription of the template strand

Copy A A T T G G C C T G C A T C C A A G G

T T A A C C G G A C G T A C G T T C C

3′ 5′

A A T T G G C C T G C A T C C A A G G

Sense
Coding strand/
DNA codons

5′ 3′

U U A A C C G G A C G U A G G U U C C

Anti-sense
Template/DNA
anti-codons

3′ 5′

mRNA mRNA codons

Replication

Transcription

5′ 3′

Figure 1.5 The difference between replication and transcription

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

GENES AND PROTEINS 15

and use U rather than T. There are therefore three ways that a gene can
be described: through the template or antisense strand, through the cod-
ing or sense strand, and through the mRNA that is transcribed from the
template or antisense strand.

Spliceosome and transcriptome

Just because a gene has been transcribed into mRNA does not mean
that the task of making a copy of a gene has finished. Genes contain
‘coding’ and ‘non-coding’ regions. These regions are different from the
‘junk DNA’ mentioned earlier, which refers to the DNA between genes
rather than within a gene. A coding region in a gene is that sequence
of nucleotides within a gene that is actually used for making a protein.
Even within a gene there are non-coding regions – nucleotide sequences
that are not used for making a protein. These non-coding regions have
to be removed from the mRNA, which is nothing but a faithful copy
of a gene from beginning to end, including non-coding regions. After
the mRNA has been ‘edited’ to remove introns, there is still another
process that is only recently being understood. The remaining exons in
the mRNA can themselves be ‘edited’ so that some exons are removed
(Figure 1.3(b)) or shuffled to form alternative ‘splice pathways’ (that is,
alternative ways that the remaining coding regions make up the final
mRNA, Figure 1.3(c)). The study of how mRNA is formed from genes
is called ‘transcriptomics’ and the total set of mRNA transcripts is called
the ‘transcriptome’. The transcriptome provides information as to which
genes are being transcribed and which are not, depending on the cell type
and various conditions experienced by the cell. The study of how mRNA
is edited after initial transcription is called ‘spliceosomics’ and the total
set of alternative splice pathways for all genes is called the ‘spliceosome’.
Recent advances in microarray technology have made transcriptomics
and spliceosomics possible, as will be seen later.

There is growing interest in those regions of DNA within a gene which
indicate exon/intron boundaries to try to understand the transcriptome in
more detail. Introns, for eukaryotes including humans, average in length
from about 200 to 400 nucleotides, but this figure can vary greatly (from
50 to about 30 000). Some of the longer introns may contain other genes,
each with their own introns. Analysis of exon/intron boundaries reveals,
with very few exceptions, a GT/AG rule, whereby the occurrence of GT
towards the 5′ end of a DNA sequence indicates the start of an intron
and the occurrence of AG towards the 3′ end indicates the end of the

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

16 INTRODUCTION TO THE BASICS OF MOLECULAR BIOLOGY

intron. It appears that internal splicing mechanisms recognize the mRNA
counterparts to these duplets and remove the intervening sequence from
the transcribed mRNA (called ‘pre-mRNA’). Interest is also growing in
alternative splicing models that capture alternative pathways for the re-
moval of introns. Any DNA segment can therefore be an exon or an
intron, depending on whether it is retained or removed during process-
ing of pre-mRNA. Once all editing has taken place, the result is ‘mature
mRNA’ which is ready for translation into a polypeptide chain.

Translation and the proteome

The mature mRNA leaves the nucleus and is transported to ribosomes,
where translation into proteins takes place with the help of transfer RNA
(tRNA). The nucleotides of the mRNA enter the ribosome sequentially
from beginning to end and form groups of three bases, called codons
(Figure 1.6). When a codon enters the ribosome, free-floating tRNA
molecules consisting of a matching element and an amino acid attempt

‘Spent’ tRNA
mRNA grouped
into three bases
at a time (codon)

Free-floating
tRNA

Codons broken
up for reuse of
mRNA bases

Ribosome

Growing polypeptide
chain (protein)

Protein folds into
complex structure

tRNA

tRNA match
against codons

Amino
acid

Figure 1.6 The process of translation at a ribosome

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

GENES AND PROTEINS 17

to match the codon against their matching element. If a match is made,
the attached amino acid is released from the tRNA and added to the
amino acid sequence (polypeptide chain) that is being formed from earlier
matches against the mRNA that has entered the ribosome. For instance,
the mRNA triplet GCU (guanine–cytosine–uracil), which is an mRNA
transcription of the DNA triplet CGA (cytosine–guanine–adenine), is
mapped by a tRNA molecule onto the amino acid alanine.

The spent mRNA can be reused in the nucleus for the formation of
new mRNA. The spent tRNA can be reused if another amino acid is
attached to the matching element. At initiation the ribosome recognizes
the starting point in a segment of mRNA and binds a molecule of tRNA
bearing a single amino acid. In elongation, a second amino acid is linked
to the first, the ribosome shifts position on the mRNA molecule, and the
elongation cycle is repeated. When a stop codon is reached, the chain of
amino acids folds spontaneously to form a protein.

The start of gene translation is signalled by a specific sequence, AUG
(methionine), and translated proteins will nearly always start with M.
However, if there is a jump in transcription and a base is skipped over,
a shift in the ‘reading frame’ results, leading to different codons and a
different sequence of amino acids for the same sequence of DNA. While
such shifts will mostly result from errors in transcription, it is possible
that such jumps are also part of normal transcription, resulting in a gene
producing up to three different transcripts of a coding region depending
on whether it jumps over no bases, one base or two bases at the start of
the transcription process.

There are 64 different combinations of mRNA nucleotides in codons:
four ways to form the first base times four ways to form the second base
times four ways to form the third base. Although there are 64 different
codons, there are only 20 amino acids used by the human body and
the vast majority of organisms on this planet. The translation of codons
into amino acids by 64 different tRNA molecules, each with their own
matching element, is determined by the ‘genetic code’ (Table 1.1). Many
scientists believe that the best evidence that all life on Earth evolved from
a common ancestor three billion years or so ago comes from the fact that
the genetic code is universal for nearly all life on Earth. The amino acid
names and commonly accepted ways to abbreviate them are given in
Table 1.2. A typical gene sequence and its protein product are given in
Table 1.3.

Once the full protein sequence consisting of amino acids linked to-
gether by tRNA and synthesized by ribosomes is formed, it goes through

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

18 INTRODUCTION TO THE BASICS OF MOLECULAR BIOLOGY

Table 1.1 The mRNA genetic code: 61 mRNA codons stand for one of the 20
amino acids; the remaining three – ATT, ATC and ACT in DNA form, UAA, UAG
and UGA in mRNA form (above) – are used for ‘punctuation’ and tell the tRNA to
stop translation (i.e. the end of the gene has been reached). Only small variations to
this genetic code exist in a few microbes, and the genetic code applies to all nuclear
genes, i.e. genes which are enveloped in a nucleus within a cell, as opposed to DNA
which is free-floating within the cell. The genetic code can also be expressed in DNA
terms (e.g. TTT for Phe, etc.).

Second base

First base U C A G Third base

U UUU Phe UCU Ser UAU Tyr UGU Cys U
UUC Phe UCC Ser UAC Tyr UGC Cys C
UUA Leu UCA Ser UAA Stop UGA Stop A
UUG Leu UCG Ser UAG Stop UGG Trp G

C CUU Leu CCU Pro CAU His CGU Arg U
CUC Leu CCC Pro CAC His CGC Arg C
CUA Leu CCA Pro CAA Gln CGA Arg A
CUG Leu CCG Pro CAG Gln CGG Arg G

A AUU Ile ACU Thr AAU Asn AGU Ser U
AUC Ile ACC Thr AAC Asn AGC Ser C
AUA Ile ACA Thr AAA Lys AGA Arg A
AUG Met ACG Thr AAG Lys AGG Arg G

G GUU Val GCU Ala GAU Asp GGU Gly U
GUC Val GCC Ala GAC Asp GGC Gly C
GUA Val GCA Ala GAA Glu GGA Gly A
GUG Val GCG Ala GAG Glu GGG Gly G

a post-translational process whereby it first folds into a complex three-
dimensional structure in the Endoplasmic Reticulum and then enters the
Golgi apparatus for further modification, such as the addition of sugar
molecules and other markers that help the protein find its localization
(that is, where in the cell or in other cells it should go). Only after these
post-translational modifications is the protein functional. The collection
of all proteins produced in a cell, in tissue, organ or organism is called
the proteome, and the study of proteins is proteomics.

Summary of transcription and translation

To summarize, collisions between RNA polymerase (an enzyme which is
a large protein that helps make and break bonds) and the DNA lead to
the RNA polymerase running into certain initiation and start sequences
of genes and latching onto them.

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

GENES AND PROTEINS 19

Table 1.2 The 20 amino acids and their commonly used abbreviations; each amino
acid has a single letter as well as a three-letter abbreviation (Table 1.1).

Full name Single-letter abbreviation Three-letter abbreviation

Glycine G GLY Gly
Alanine A ALA Ala
Valine V VAL Val
Leucine L LEU Leu
Isoleucine I ILE Ile
Phenylalanine F PHE Phe
Proline P PRO Pro
Serine S SER Ser
Threonine T THR Thr
Cysteine C CYS Cys
Methionine M MET Met
Tryptophan W TRP Trp
Tyrosine T TYR Tyr
Asparagine N ASN Asn
Glutamine Q GLN Gln
Aspartic acid D ASP Asp
Glutamic acid E GLU Glu
Lysine K LYS Lys
Arginine R ARG Arg
Histidine H HIS His

The RNA polymerase then unravels the appropriate part of the DNA
double helix. Free-floating bases in the nucleus attach themselves to the
revealed DNA bases on the template strand, forming a complementary
sequence which becomes the messenger RNA. The double helix is re-
formed as transcription continues along the unravelled DNA molecule.
When a terminating sequence of bases is found in the DNA, the resulting
messenger RNA, after editing to remove introns and to form alternative
spliced forms, is dispatched to the ribosomes, where combinations of
three bases at a time in the messenger RNA are used by tRNA to pro-
duce one of 20 different amino acids. Sequences of these amino acids
(varying in length from a few hundred to a few thousand) are called
polypeptide chains, which are folded in the Endoplasmic Reticulum
and packaged in the Golgi apparatus and then (i) secreted from the cell
as enzymes and proteins for use by other cells in the organism, or (ii)
used by the cell for its own purposes (as, for example, with single cell
organisms). These polypeptide chains are therefore the final represen-
tation, or product, of the sequence of bases unravelled in the DNA
molecule.

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

20 INTRODUCTION TO THE BASICS OF MOLECULAR BIOLOGY

Table 1.3 An example of a gene and its amino acid translation, taken from
http://www.ncbi.nlm.nih.gov/entrez. The mRNA sequence is given in (a) and con-
sists of 729 bases. The name of the gene is given by the ‘Locus’ field in (c), with its
definition below. A unique accession number for the gene is also provided (Z22865).
The source of the gene is provided in terms of discoverers and authors. The ‘CDS’
values indicate that only bases 13 to 618 result in translation after editing. Hence,
translation starts with the ‘aug’ sequence at positions 13, 14 and 15 in (a). This
codon is mapped to methionine (M) in (b) (see Table 1.1). The next codon ‘gac’ is
translated to aspartic acid (D), and so on. The final codon (positions 616, 617 and
618) is ‘uag’, which stands for ‘stop’. Hence the final translated codon is in positions
613, 614 and 615 (guu), which is valine (V)

(a)
1 gaauucggga gcauggaccu cagucuucuc uggguacuua ugccccuagu caccauggcc

61 uggggccagu auggcgauua uggauaccca uaccagcagu aucaugacua cagcgaugau
121 ggguggguga auuugaaucg gcaaggcuuc agcuaccagu guccccaggg gcaggugaua
181 guggccguga ggagcaucuu caguaagaag gaagguucug acagacaaug gaacuacgcc
241 ugcaugccca cgccacagag ccucggggaa cccacggagu gcugguggga ggagaucaac
301 agggcuggca uggaauggua ccagacgugc uccaacaaug ggcugguggc aggauuccag
361 agccgcuacu ucgagucagu gcuggaucgg gaguggcagu uuuacuguug ucgcuacagc
421 aagaggugcc cauauuccug cuggcuaaca acagaauauc caggucacua uggugaggaa
481 auggacauga uuuccuacaa uuaugauuac uauauccgag gagcaacaac cacuuucucu
541 gcaguggaaa gggaucgcca guggaaguuc auaaugugcc ggaugacuga auacgacugu
601 gaauuugcaa auguuuagau uugccacaua ccaaaucugg gugaaaggaa aggggcccuc
661 cagcuuucca cugcagagaa agugguuguu gcuccucggu auauguaauc auaauuguag
721 aucgaauuc

(b)
MDLSLLWVLMPLVTMAWGQYGDYGYPYQQYHDYSDDGWVNLNRQGFSY
QCPQGQVIVAVRSIFSKKEGSDRQWNYACMPTPQSLGEPTECWWEEINRAGM
EWYQTCSNNGLVAGFQSRYFESVLDREWQFYCCRYSKRCPYSCWLTTEYPGH
YGEEMDMISYNYDYYIRGATTTFSAVERDRQWKFIMCRMTEYDCEFANV

(c)
LOCUS HSDERMATA 729 bp
DEFINITION H.sapiens dermatopontin mRNA, complete CDS
ACCESSION Z22865
KEYWORDS dermatopontin; proteoglycan-binding cell-adhesion protein
REFERENCE 1 (bases 1 to 729)
AUTHORS Superti-Furga, A., Rocchi, M., Schafer, B.W. and Gitzelmann, R.
TITLE Complementary DNA sequence and chromosomal mapping of a

human proteoglycan-binding cell-adhesion protein
(dermatopontin)

JOURNAL Genomics 17 (2), 463–467 (1993)
CDS 13....618

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

CURRENT KNOWLEDGE AND THE ‘CENTRAL DOGMA’ 21

1.5 Current knowledge and the
'central dogma'

What has been described so far is the ‘central dogma’ in biology: that one
gene by and large produces one mRNA that by and large produces one
protein. More specifically, the central dogma consists of six ‘axioms’.

1 DNA replicates its information in a process that involves many repli-
cation enzymes.

2 DNA codes for the production of messenger RNA (mRNA) during
transcription.

3 In eukaryotic cells, the mRNA is processed (essentially by splicing)
and migrates from the nucleus to the cytoplasm.

4 mRNA carries coded information to ribosomes, where protein is syn-
thesized using the mRNA during translation.

5 Proteins do not code for the production of proteins, RNA or DNA.

6 Proteins are involved in almost all biological activities, structural or
enzymatic.

In fact, transcription and translation are even more complicated than
previously described. Some gene products are not translated at all but
function in their RNA form after transcription. For instance, genes that
code for tRNA and ribosomes cannot be translated. If they could, they
would depend on tRNA and ribosomes for the translation! Instead, af-
ter transcription these RNA molecules exit the nucleus and perform their
roles in the translation of normally transcribed and translated genes. This
has led to the identification of several different types of RNA, the most
common of which are messenger RNA (mRNA), transfer RNA (tRNA),
ribosomal RNA (rRNA) for the building of the ribosomes, and small
nuclear RNA (snRNA) that help edit the mRNA. mRNA is the primary
messenger synthesized from a gene segment of DNA and carrying the
code into the cytoplasm where protein synthesis occurs. rRNA (ribo-
somal) in the cytoplasm and protein combine to form a nucleoprotein
(ribosome) that serves as the translation site and carries the enzymes
necessary for protein synthesis. Several ribosomes may be attached to a

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

22 INTRODUCTION TO THE BASICS OF MOLECULAR BIOLOGY

single mRNA at any time. tRNA (transfer) contains about 75 nucleotides,
three of which form a tRNA anticodon, and one amino acid. The tRNA
reads the code and carries the amino acid to be incorporated into the
developing protein.

Also, there is growing evidence that, for many genes, there are many
more ‘splice variants’ than previously believed, where different combi-
nations of introns and exons exist. It is not a simple matter of introns
being removed and the remaining exons being sent sequentially to the
ribosomes. One gene can produce many different types of polypeptide
chain depending on how many introns are removed and how the ex-
ons are shuffled or differently spliced. This means that, while the human
genome may consist of only 30 000 genes, the genes may produce many
more proteins. It is not currently clear what the relationship between
gene and protein is in humans, or how many human genes can be alter-
natively spliced, but estimates vary from between 1:10 to 1:100 for the
gene: protein ratio and from 60 per cent up to 75 per cent of human
genes having alternative splice variants. That is, although humans have
only 30 000 genes, these may well produce anything between 200 000
and two million proteins through alternative splicing. Interest in splice
variants has led to the conjecture that, in addition to the genome (total
set of DNA and genes) and proteome (total set of proteins), it is in the
spliceosome (total set of alternative splice variants for a particular gene)
that the real answers will be found as to how genes are mapped onto
proteins and how many proteins are actually capable of being made.

DNA polymerase which replicates chromosomes is so accurate that
there is only one error in every 107 nucleotide pairs. A DNA mismatch
repair system also operates to correct nearly all of these errors, increas-
ing the overall accuracy to one error in 109 nucleotides copied. While
thousands of random chemical changes are created every day in human
DNA, the vast majority are eliminated by DNA repair. For instance, some
varieties of yeast have about 50 genes devoted to gene repair. It is not
known how many human genes are devoted to gene repair.

The Mendelian concept of dominant and recessive genes can be given
precise biomolecular accounts in terms of genes which express their
effects via proteins even in the presence of a different gene for the same
trait (‘dominant’) and genes which do not produce an observable effect
via proteins when paired with a dominant gene (‘recessive’). When a new
diploid cell is formed, complete copies of all the chromosomes must be
made through DNA replication. The two copies of a chromosome pair
have the same genes but may have different versions (alleles) of these
genes with distinct DNA sequences. So, for instance, if there is a single

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

WHY PROTEINS ARE IMPORTANT 23

gene for the colour of hair, it will have many forms, each coding for a
certain hair colour. There will be two such genes – one inherited from
the father and the other from the mother. One may be dominant and
the other recessive, in which case hair will be produced of similar colour
to one of the parents, or both could be dominant or recessive, in which
case hair will be produced that is the ‘average’ between the parents’ hair
colour. It is also possible that one allele could be dominant for a certain
period, and then be suppressed by the other allele for other periods.

1.6 Why proteins are important

So, what happens to the enzymes/proteins produced by ribosomes, the
Endoplasmic Reticulum and the Golgi apparatus? As mentioned earlier,
proteins carry out many vital functions in living organisms. As structural
molecules, they provide much of the cytoskeletal framework of cells and
also help cells form tissue. Proteins also carry signals from one part of
the body to another, or from one cell to another. Proteins can also act as
a transport system, carrying molecules such as oxygen in the circulatory
system so that all cells can have access to this important element. The
human immune system is also dependent on proteins for detecting the
arrival of pathogens as they enter the human system and for helping to
mount an effective immune system defence. As enzymes proteins act as
biological catalysts that speed up the rate of cellular reactions. The chem-
ical composition of one cell could be placed in a test tube and observed.
After some time, some chemical reactions naturally occurring in the test
tube might be noted. There will be a long delay because the activation
energy required to start a chemical reaction acts like an energy barrier
over which the molecules must be raised for a reaction to take place. An
enzyme effectively lowers the activation energy required for a reaction to
proceed. An enzyme locks onto a molecule, starts a reaction, and then is
released unchanged. The rate of enzyme combination and release is called
the turnover rate and is about 1000 times a second for most enzymes,
with variation between 100 per s and 10 million per s. The increase in
reaction rate achieved by enzymes ranges from a minimum of about a
million to as much as a trillion times faster than an uncatalysed reaction
at equivalent concentrations and temperatures.

However, enzymes cannot work unless they have folded in the right
way. That is, it is the structure of the enzyme that determines what it does
and whether it does it. If enzymes do not fold in the right way, they cannot
carry out their enzymatic activity, because they will not be able to lock

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

24 INTRODUCTION TO THE BASICS OF MOLECULAR BIOLOGY

on to their target molecules (which also have complex three-dimensional
structures) to start the appropriate reaction. The study of protein folding
and protein structure is a key element in understanding what proteins
do. However, what is actually observed in organisms are already-folded
proteins. Trying to ‘straighten’ a protein so that the sequence of amino
acids is revealed is a major problem in proteomics. The number of well-
understood, sequenced and structured proteins is small compared with
the total number of proteins that exist. Also, as will be seen later, trying
to determine the structure of a protein from its DNA, mRNA or even
amino acid sequence is much more complex than it appears. There is
therefore a growing mismatch between understanding genes and mRNA
(which is growing rapidly) and their resulting proteins (which is growing
much more slowly). However, genes and mRNA do not carry out the
crucial work required in a cell or organism – proteins do. A key question
for bioinformatics is whether this growing gap between knowledge of
genes and knowledge of proteins can somehow be bridged by the use of
computers.

From this it can be seen that the process of enzyme/protein production,
as determined by DNA, is absolutely critical to the continued well-being
of an organism, otherwise organisms as chemical beings would not pro-
duce chemical reactions fast enough to keep then alive (e.g. respiration,
digestion). Enzymes degrade eventually after catalysing many reactions,
and they are broken down into their constituent parts by other enzymes
(the ‘degradome’) for reuse by the organism.

What life now means, according to biomolecular science, is the set
of genes (DNA) which code for the production of appropriate enzymes
which increase the rate of chemical reactions in cells, where the nature
and rate of reactions are determined by the nature of the enzymes. Or-
ganisms of a particular species are all essentially the same chemically;
what differs are the enzymes produced by the DNA inherited by their
parents and other factors (e.g. mutation of individual bases and genes
by random means). These enzymes control cellular processes differently
for different members of the species, thereby leading to different physical
characteristics.

1.7 Gene and cell regulation

It is necessary to assume that there is some ‘control’ mechanism that
regulates gene transcription (into mRNA) and mRNA translation (into
polypeptide chains). If transcription and translation were only dependent

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

GENE AND CELL REGULATION 25

on random collisions thousands, if not millions, of times per s deep within
the nucleus (transcription) and at ribosomes (translation), there would
be no cell differentiation, since each cell would transcribe and translate
its full complement of DNA. Yet, there are many different types of cell
producing different types of protein from different subsets of their genes.
Cells of the same type form tissue, and tissues form organs, resulting in an
organism where it is the differences in cell type which give the organism
its shape and structure. If all cells transcribed their full complement of
DNA, organisms would be shapeless and lack structure.

Transcriptional regulation helps to determine which parts of a genome
are active in a nucleus (i.e. can be copied into mRNA) and which are de-
activated. Translational regulation determines the rate at which mRNAs
copied from active genes are used by ribosomes in protein synthesis.
Genes coding for mRNA are much longer than their corresponding
mRNA, consisting of a flanking region upstream of the first nucleotide
to be copied. This flanking region consists of a promoter and an en-
hancer. The promoter itself consists of two parts: basal and upstream.
The basal promoter provides recognition and binding sites for the RNA
polymerase II (pol II, or RNAP II) and is located about 40 base pairs (bps)
from the start of the gene. The basal promoter attracts a large number
of other proteins to it called transcription factors, the function of which
is to initiate accurate transcription of the gene. The basal promoter typ-
ically contains a sequence of seven bases (TATAAAA, the ‘TATA box’
see Figure 1.4). Upstream promoters serve to activate or repress tran-
scription, and once the basal promoter is occupied, several other pro-
teins attach themselves to the basal promoter or upstream stretches of
DNA to modulate the rate of transcription, including repressing the gene
altogether.

Although the precise details are not yet fully understood, it appears
that promoters and enhancers form a DNA sequence, called a cis element,
which is recognized by a regulatory protein, called a trans element. Sev-
eral genes may have the same cis element which is recognized by the same
trans element, which can both increase and decrease the rate of initiation,
typically a thousandfold. Many eukaryotic genes are controlled in groups
or networks, whereby a trans element (regulatory protein) increases or
decreases the rate of initiation of a number of genes, one or more of
which in turn code for other trans elements (regulatory proteins) which
control the rate of initiation of still other genes.

Regulatory proteins are themselves the result of prior transcription
and translation of other parts of the DNA. Interestingly, if each gene had
its own unique cis element, then there would be as many trans elements

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

26 INTRODUCTION TO THE BASICS OF MOLECULAR BIOLOGY

as genes. The question of where these trans elements come from would
in turn require still other genes, which require their own trans elements,
ad infinitum. This still leaves the question of where the first trans element
comes from. One approach is to focus on the ability of a gene, because of
its biomolecular structure and content, to self-transcribe without the need
for transcription mechanisms such as polymerase and promoters. An-
other approach is to hypothesize that, at the moment of fertilization, the
cell contains not just genetic information but also some basic transcrip-
tion mechanisms and other elements (perhaps in the nucleolus – a subpart
of the nucleus) to bootstrap the process of transcription and translation.

1.8 When cell regulation goes wrong

In addition to gene regulation, there is also cell regulation. Cells are pro-
grammed to divide and make copies of themselves at certain times, de-
pending on the type of cell. The process of mitotic cell division consists of
several phases, including chromosome replication and the division of the
cell into two daughter cells. For instance, skin cells, white blood cells and
stomach cells have to be replaced frequently (every few days), whereas
nerve cells and muscle cells have much longer lifespans. It is estimated
that normal cells can divide between 40 and 70 times. The limit for cell
division is reached when the chromosomes in a cell, which are ‘short-
ened’ each time they replicate, are too short for further replication. This
shortening occurs because the molecules responsible for chromosome
replication start a little way in from the ends of chromosomes (telomeres)
for each replication. At some stage the telomeres no longer protect the
DNA on chromosomes, and replication is no longer possible without the
formation of incomplete chromosomes. Malformed daughter cells then
result which can no longer function as replacements. Normal cell divi-
sion is also required for growth from child to mature adult, and repair if
tissue is damaged. The human body experiences a constant turnover of
cells as some die and others reproduce and replace them. However, the
process of orderly reproduction of cells can go wrong, and this can lead
to one of over 100 diseases generically called cancer.

The current model of cancer is as follows. DNA in cells can be mutated
as a result of exposure to the environment (e.g. radiation), carcinogens
(biological or chemical substances that are believed to cause cancer) and
some pathogens (Hepatitus B and C viruses cause a significant number of
liver cancers). Mostly such mutations are in non-coding sections of a cell’s
DNA or genes that do not affect cell replication. However, sometimes

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

SO, WHAT IS BIOINFORMATICS? 27

these mutations affect genes that are critical for the timing of cell division
(proto-oncogenes), which then become oncogenes that instruct a cell to
divide repeatedly without control. Usually, the cell has other genes for
countering such mutations, but if these other genes are also affected then
the cell forms a tumour (a mass of cells) that continues to grow. Somehow
cancer cells achieve ‘immortality’ in that telomere reduction with each
replication does not appear to affect the ability of the tumour to grow.
Many tumours are benign or non-malignant in that they do not pose a
danger, as long as there is room for growth of the tumour; but if the
tumour blocks the normal functioning of other cells, or if the tumour
metastatizes (cancerous cells can move from part of the body to another
if they enter the circulatory system) and starts developing in other parts
of the body so that they become life-threatening, the tumour becomes
malignant. For instance, melanoma is a cancer of pigmented skin cells
which is usually benign, but if melanoma cells enter the bloodstream
they can be transported to the liver and brain, where they can present a
real danger by blocking the development of normal cells in surrounding
tissue.

1.9 So, what is bioinformatics?

There are many ways in which computer science can help in molecular
biology research. Here are just a few, to give an idea of how computers
can be useful in biology.

1 The use of computer technology for storing DNA sequence infor-
mation and constructing the correct DNA sequences from fragments
identified by restriction enzymes (enzymes which break up the DNA
at certain points) was one of the first applications, arising from the
Human Genome Project and other projects dealing with sequencing
the DNA of various organisms. While the DNA in a set of 23 chromo-
somes for a human is about 3.5 Gigabytes, the H. influenzae genome
is only 1.9 Mbs, E. coli about 4.6 Mbs, and C.elegans about 97 Mbs.
Various projects are already underway to sequence the genomes of
chicken and buffalo, and these projects, as well as several others, will
lead to huge data storage and access requirements.

2 Once genome sequences are stored and accessed, there is a need for
comparative genome analysis across databases so that the organiza-
tion and evolution of genomes can be studied. Such analyses may

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

28 INTRODUCTION TO THE BASICS OF MOLECULAR BIOLOGY

uncover relationships between model organisms, crops, domestic an-
imals and humans. Visualization tools and techniques are required to
conduct these analyses.

3 Large databases need to be structured and organized using a common
‘ontology’, or set of terms which are related structurally to each other,
so that researchers can access data from different databases using the
same ‘query language’. The Gene Ontology Consortium has produced
controlled vocabularies for describing genes and proteins which, it is
hoped, will be used by all bioinformaticians so that a common way
of referring to genes and their products emerges.

4 Many areas of biology rely on images for communicating their re-
sults. Tools and techniques are required for searching, describing,
manipulating and analysing for features within these images.

5 Once databases of genomes are created, there is a need for maintain-
ing these databases and for checking that their contents are error-free
and valid as researchers add new information. Anomalies must be
identified and actions taken to ensure that the databases are as con-
sistent as possible.

6 Protein sequences are being added to protein databases, and while
these are not growing as quickly as genomic databases, there is
a need to store protein sequences and their structure as well as
their function. Even if a common vocabulary for describing pro-
teins is accepted, there is a major need to link protein sequences
with their DNA source sequences, given the problems of introns
and non-coding DNA. There is also a need for tools that can pre-
dict the structure of a protein from its sequence of amino acids
(Chapter 2).

1.10 Summary of chapter

1 Genes in DNA are made up of sequences of four bases and are tran-
scribed into messenger RNA transcripts. It is currently not known
how many transcripts can be formed from each human gene, and
therefore it is currently not known how many products there are for
any specific human gene.

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

FURTHER READING 29

2 One gene on one strand of the double-helix (the template) is used to
make the transcript. Genes are transcribed from the 3′ to 5′ end, and
so the mRNA is synthesized from the 5′ to 3′ end.

3 mRNA is complementary to the source or template strand, except
that T in DNA is replaced by U in the mRNA. When DNA replicates
to make a complete copy of itself for cell division, normal comple-
mentary base copying occurs.

4 Genes code not only for structural and enzymatic proteins but also
for products that can affect the rate at which genes are transcribed.
Various transcription factors determine which genes are transcribed
in a particular cell.

5 Various transcription factors bind to upstream promoter regions of
genes and regulate the rate of transcription and whether a gene should
be transcribed.

6 mRNA transcripts are themselves edited to form alternative splice
variants, whereby exons coding for proteins survive and introns that
are not meant for translation to protein are removed.

1.11 Further reading

Griffiths, A.J.F., Miller, J.H., Suzuki, D.T., et al. (2005) Introduction to Genetic
Analysis, 8th edn, Freeman.

Latchman, D. (1995) Gene Regulation, Stanley Thornes.
Mount, D.W. (2001) Bioinformatics: Sequence and Genome Analysis, Cold Spring

Harbor Laboratory Press.
Weaver, R.F. (2002) Molecular Biology, McGraw Hill.

JWBK023-01 JWBK023-Keedwell March 23, 2005 10:21 Char Count= 0

30

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

2
Introduction to Problems and
Challenges in Bioinformatics

2.1 Introduction

Chapter 1 provided an overview of the basics of molecular biology of
relevance to bioinformaticians and also introduced some of the initial
problems faced by researchers in the area. This chapter examines current
and future challenges in bioinformatics. The problem areas and chal-
lenges are presented according to the field of molecular biology in which
they occur: the genome, the transcriptome and the proteome. Also, the
recently expanding area of gene silencing and interference technology
will be covered.

2.2 Genome

Sequence analysis

Some of the earliest problems in genomics concerned how to measure
similarity of DNA and protein sequences, either within a genome, or
across the genomes of different individuals, or across the genomes of dif-
ferent species. DNA and proteins can be similar in terms of their function,
their structure or their linear sequence of nucleotides or amino acids. The
fundamental assumption for DNA is that two DNA sequences that are
similar probably share the same function, even if they occur in different
parts of the genome or across two or more genomes. The fundamental

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd

31

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

32 INTRODUCTION TO PROBLEMS AND CHALLENGES

assumption for proteins is that linear sequence determines shape which,
in turn, determines function. This is because the shape of a protein, and in
particular of enzymes, determines which other molecules these proteins
can lock on to and affect.

Consider the two DNA strings of equal length: ACGTACGT and AC-
CTAGGT. How similar are they? One way to deal with this problem is
to place them one on top of the other:

A C G T A C G T

A C C T A G G T

A count is made column by column to identify the number of mismatches
per position, which in the above case is two. This is the Hamming dis-
tance, which is the simplest measure of similarity available. The two
strings ACGTACGT and CCCTCCCT would have a Hamming distance
of four, and the two strings ACCTAGGT and CCCTCCCT would also
have a Hamming distance of four. The two strings ACGTACGT and AC-
CTAGGT therefore are more similar to each other (Hamming distance
of two) than CCCTCCCT is to either of them (Hamming distance of
four). The problem is, what happens if strings are of unequal length?
Consider ACGTACGT and AGTACGT. If these strands are lined up:

A C G T A C G T

A G T A C G T

the result is a Hamming distance of seven (assuming that the last base of
the first string cannot be matched to a blank). Yet, if a blank is inserted
in the second string:

A C G T A C G T
A - G T A C G T

the Hamming distance is one, i.e. the strings are very similar.
Now imagine that, instead of just eight bases in a DNA sequence there

are hundreds and possibly thousands of bases (for example, if a whole
gene is compared against other genes). Gene sequences are extremely
unlikely to be of equal length, and methods must be found for inserting
blanks at appropriate locations in the shorter string and stretching it
out to optimize the number of matches. Shorter strings may result when
the DNA replication machinery goes wrong and bases are skipped over.

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

GENOME 33

Equally, some bases may need to be deleted. Consider the following three
strings:

A C G T A C G T

A G T A C G T

A G G A C G T

One possibility is to insert blanks into the second and third strings at po-
sition two (two insertions) to line up the three strings. Another possibility
is to delete the second base of the first string (one deletion):

A G T A C G T

A G T A C G T

A G G A C G T

Since one deletion may be preferable to two insertions this may be the
preferred strategy, but now consider what would happen if the first two
strings were matched without any knowledge of the third string. The
strategy might well have been to insert a blank into position two of the
second string to optimize similarity. However, when the third string is
entered, it is now discovered that it would have been preferable to delete
the second base of the first string rather than insert a blank into the third
string. Backtracking may be required to undo the insertion of the blank
into the second string, but backtracking will only work if there is stored
information as to what was done earlier so that it can be undone. For
long strings and for matching many strings, the memory requirements
can quickly become large.

The above problem is easy with just a handful of strings and small
numbers of bases, but already the problem with long and large numbers
of sequences is apparent. There can be pairwise comparison of strings,
where changes are made to earlier decisions as new strings are entered,
or there can be multiple comparison of all strings at once and matches
can be optimized for specific positions across all sequences. Also, there
can be local alignment (finding alignments between parts of two or more
sequences) and global alignment (finding an alignment for sequences in
their entirety). There are now a number of publicly available tools on the
web for undertaking alignments.1,2

The requirement for a minimal number of changes arises from the prin-
ciple that, when identifying similarity between strings, as few alterations

1 See, for example, http://www.ncbi.nlm.nih.gov/Education/ for a tutorial on Blast.
2 See, for example, http://www.ebi.ac.uk/fasta33 for Fasta.

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

34 INTRODUCTION TO PROBLEMS AND CHALLENGES

as possible should be made to the original strings so that optimal simi-
larity measures are returned. This is the unit cost model, also known as
the Levenshtein Distance, which states that the cost of an alignment of
two sequences s1 and s2 is the sum of the costs of all the ‘edit’ operations
required to match the two sequences, and that an optimal alignment of
s1 and s2 is an alignment that has minimal cost among all the possible
ways that they can be aligned. Extensions to the unit cost model include
substitution matrices that provide variable costs for insertion, deletion
and replacement of bases and amino acids, realistic gap models that pre-
vent deletions and insertions in critical subsequences (such as strongly
conserved subunits in protein sequences involved in protein–protein in-
teraction, where any edit in these subsequences may destroy the desired
biochemical function) and the use of an extended genetic alphabet that
represents possible ambiguities in the data. The most common symbols
used in an extended genetic alphabet are: R for G or A (PuRine), Y for
T or C (PYramidine) and N (ANy).

A related problem here is how to find a common substring for all
strings or sequences. This is known as the ‘superstring’ problem, where
the common substring is the shortest sequence of characters shared by all
sequences. This problem is, in computational terms, intractable, in that
there is no known algorithm that will work in reasonable time to find
such a superstring as the number of sequences and their length increase.

Phylogeny

Many algorithms now exist for sequence alignment, including Dynamic
Programming (for both pairwise and multiple alignment) and the Carillo–
Lipman method for optimal multiple alignment. The purpose of align-
ment is to learn about the phylogenetic and evolutionary relationships
between genes with a similar function. For instance, a large number of
sequences can be retrieved from a number of different genome or protein
databases using a specific subsequence. Each database may store infor-
mation on one or more organisms. The research task is then to discover
the evolutionary relationships between these sequences and therefore the
organisms on the assumption that evolution can be described as ‘descent
with modification’. That is, inherited similarities and differences between
organisms provide the basic information needed to hypothesize evolu-
tionary relationships between these organisms, where these similarities
and differences are expressed in DNA sequences, amino acid sequences
or phenotypic characteristics. The principle of parsimony in phylogeny

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

GENOME 35

essentially states that derived similarities between sequences can be as-
sumed to be caused by common ancestry and that inferences concerning
these similarities should be kept as simple as possible.

Phylogeny and classification are important areas of biology, since they
deal with the identification, naming and grouping of organisms based
on shared similarities. Linnaeus introduced the ‘binomial’ classification
system in the 18th century consisting of two Latin names, where the
first name (always starting with a capital letter) denotes the genus and
the second (always starting with a lower case) the species (as in Homo
sapiens). While only two layers of taxonomy existed in Linnaeus’ day, it is
currently widely accepted that there are seven layers: Kingdom, Phylum,
Class, Order, Family, Genus, species. The task of current phylogeny is
to locate all organisms in a comprehensive classification scheme that
reflects their evolution from a common ancestor believed to have come
into existence about two and a half to three billion years ago on this
planet.

To give an idea of the computational cost involved in such a com-
prehensive classification, imagine that all organisms have just five genes,
each of which can take any number of alleles. Gene sequences can be
compared base by base, as previously described, to identify similarities
and differences between genes. Imagine also initially that there are just
four organisms, each of which takes 1 s to compare with another organ-
ism across all five genes. To construct a set of similarity scores for these
four organisms takes 6 s (3 s to compare organism 1 with organisms 2,
3 and 4; 2 s to compare organism 2 with 3 and 4; and 1 s to compare
organism 3 with 4). If there are 10 organisms, the time taken is 9 +
8 + . . . 1 = 45 s. That is, to calculate similarity scores for n organisms
takes (n − 1)∗(n/2) s. The cost for 100 organisms is therefore 99*50 s =
4950 s, or 1 h 22.5 min. Note that the time taken for 100 organisms
is not the same as 25 times the cost for four organisms. It is estimated
that there are between 12 and 15 million existing organisms/species on
this planet, with some claims that 99 per cent of species are extinct. To
calculate similarity scores for 10 million existing species, given previous
assumptions, would take 9 999 999∗5 000 000 s, i.e. over one and a half
million years. If this represents just 1 per cent of all species, it will take us
over 150 million years to calculate similarities for all organisms that have
ever existed. If it is argued that 1 s per comparison is far too long, given
just four genes, it can be counter-argued that organisms contain more
than just four genes, so even this figure will need amending upwards.
Even if it is possible to calculate the similarities in a realistic amount of
time, there is another problem which is the construction of the resulting

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

36 INTRODUCTION TO PROBLEMS AND CHALLENGES

Table 2.1 A table of information indicating shared gene ‘val-
ues’ across four organisms. The gene values are assumed to be
binary phenotypic values for the sake of exposition although
in real life gene values can be expected to be much more com-
plex, such as long strings of DNA, amino acids or multivalued
phenotypes. ‘0’ stands for ‘ground state’ and ‘1’ for ‘advanced
state’.

Gene 1 Gene 2 Gene 3 Gene 4

Organism A 0 0 0 0
Organism B 1 0 0 0
Organism C 1 1 0 1
Organism D 1 0 1 1

phylogenetic tree (a tree diagram that displays evolutionary relationships
among a number of organisms or species).

Consider Table 2.1 and the four organisms with the four genes that
they share. For the sake of simplicity, assume that each gene has only two
phenotypic values, 0 and 1. The task here, however, is to demonstrate
the complexity involved in generating phylogenetic trees for even this
simple dataset.

The values for genes differ between different organisms through a
variety of mechanisms. Mutations (that is, value differences) can occur
through substitution (one nucleotide miscopied as another), insertions
(new bases are added) and deletions (some bases are deleted altogether),
resulting in different gene values, as in Table 2.1. The question arises as
to whether, given the information in Table 2.1, any overall conclusions
can be drawn as to how these organisms are related in evolutionary terms
to each other.

There are two general methods for deriving trees from such tables.
The first, called Hennig Argumentation, considers the information pro-
vided by each gene one at a time (i.e. it works column by column). The
information in Gene 1 (advanced state value 1) unites B, C and D (Fig-
ure 2.1(a)), the information in Gene 2 (advanced state value 1) is peculear
to C (Figure 2.1(b)), the information in Gene 3 (advanced state value 1)
is peculear to D (Figure 2.1(c)), and finally the information in Gene 4
(advanced state 1) is shared between C and D (Figure 2.1(d)). A tree is
obtained that evolves as the information is included column by column.

One interpretation of the tree is that all four organisms shared an
ancestor in the past (first split in the tree), but that B, C and D split from
A through the sharing of a specific value for Gene 1 (common ancestor
for B, C and D), that C and D split from B through the sharing of a

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

GENOME 37

(a)

A B C D

A B C D

1

(b)

A B C D
2

1

(c)

1
3

2

(d)

A B C D

1
4

2 3

Figure 2.1 Hennig Argumentation considers the information provided by each gene
one at a time

specific value for Gene 4 (common ancestor for C and D), and that C
and D split from each other through the acquisition of specific values for
Genes 2 and 3 (common ancestor).

Hennig Argumentation is simple but can lead to complex tree labelling
when information from genes in subsequent columns conflicts with in-
formation already included from earlier columns. This can in turn lead to
complex interpretations of phylogeny. For instance, if Gene 4 had united
B and C rather than C and D, the label for Gene 4 would need to be
moved to the same location as the label for Gene 1, and then explicitly
an exception label must be inserted to signify that D does not share the
value for Gene 4 (Figure 2.2). The interpretation now is that D reverted
back to its original state with regard to Gene 4 after a common ancestor
to B, C and D shared a common state for Gene 4.

Trees derived through Hennig Argumentation are therefore highly de-
pendent on the first columns (genes) encountered and do not take the
information in all columns into account before generating the first can-
didate phylogeny tree. Conflicts in subsequent columns can lead to many
exception labels or even re-formatting the tree to minimize such excep-
tions. While the situation may not be too bad for a ‘binary’ gene value
example, real gene values can be expected to consist of more than just
binary states, and typically many more than four organisms will need to
be related phylogenetically.

To overcome the problems of Hennig Argumentation, Wagner Trees
can be used instead. Consider the information in Table 2.2, but this time
a phylogenetic tree is going to be constructed organism by organism

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

38 INTRODUCTION TO PROBLEMS AND CHALLENGES

(a)

A B C D

A B C D

1

(b)

A B C D
2

1

(c)

1
3

2

(d)

A B C D

1

−4

4

2 3

Figure 2.2 An alternative Hennig Argumentation

(row by row) rather than gene by gene (column by column), with the
purpose of minimizing the number of state changes required. The first
step in Wagner Tree construction is to find the organism that has fewest
‘advanced’ states, where 1 stands for ‘advanced’. A has 0 values across
all genes and therefore no advanced states.

A comparison is made between all the other organisms against A, with
B having one derived or advanced state in comparison to A, while C and
D have two and three derived or advanced states in comparison to A,
respectively. B is linked to A first (Figure 2.3(a)) since it is most similar to
A. The organism with the next lowest number of advanced states is then
identified. Since C has two derived state differences, its name is written
beside B and connected to the line that joins B and A (Figure 2.3(b)).
At the point where the two lines intersect, the most advanced states
present in B and C are listed (the intersection of state values is called an
optimization). Since B and C both have a derived state for Gene 1 but do
not share other derived states, the optimization is 1000, where the first

Table 2.2 A table of gene values for four organisms to demon-
strate the Wagner method of phylogenetic tree construction

Gene 1 Gene 2 Gene 3 Gene 4

Organism A 0 0 0 0
Organism B 1 0 0 0
Organism C 1 1 0 0
Organism D 1 1 1 0

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

GENOME 39

(a)
B A

1 1

1

(b)
B C A

1000

(c)

B AC CD D
32

3

2

2

1000

(d)

B AC D

1100

1

B AC D
32

2

B A

Figure 2.3 The Wagner method constructs phylogenetic trees by adding organisms
one at a time based on the number of gene value differences between
organisms

bit signifies Gene 1, the second bit Gene 2, and so on. Finally, D has to
be linked into the tree and connected to a point that requires the fewest
number of state changes. There are several possibilities, three of which
are depicted in Figure 2.3 (c). Since the second and third possibilities
imply that Gene 2 evolved twice, whereas the first possibility implies
that Gene 2 evolved only once, the preferred most parsimonious tree
(the first possibility) is adopted. An optimization is calculated and the
analysis is complete (Figure 2.3 (d)).

To aid tree construction, an outgroup organism is usually used that
has no shared characteristics (gene values) with any of the organisms to
be classified but is nevertheless ancestrally related to the ingroup (the
organisms to be classified). This outgroup is located in the tree first and
acts as a basis for comparison as well as providing ‘directionality’ to the
evolutionary sequence depicted by the tree. The length of a tree is the to-
tal number of steps or state changes in the tree, and a tree with a smaller
length is to be preferred to a tree of greater length for the same organ-
isms. Parsimony is essentially an optimality criterion, and several differ-
ent methods now exist for calculating optimal tree structures, including
Wagner optimality, Fitch optimality, Dollo optimality and Camin–Sokal

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

40 INTRODUCTION TO PROBLEMS AND CHALLENGES

optimality. Building phylogenetic trees becomes complicated as datasets
become larger or contain conflicts that have to be resolved, usually by
re-formatting a tree. Optimality procedures usually work in a step-wise
manner such that each organism is added where it optimally fits a tree, as
in the Wagner method above. However, such exhaustive search methods
that check all possible trees quickly become intractable as the number of
organisms and genes grows.

The ultimate aim of phylogenetic analysis is to present a complete evo-
lutionary history of all life on earth that shows how all organisms are
related to each other, either existing or extinct. Advances in molecular
biology have now allowed the use of genetic sequences (DNA or amino
acid sequences) for tree construction, rather than the characteristic traits
that were used in the past, since these sequences provide a more detailed
and lower-level account of differences between organisms and species.
In Figure 2.4, the top table describes the same stretch of DNA for the
four organisms A, B, C and D. B, C and D differ from A in 3, 4 and 5
positions, respectively. B is joined first to A (Figure 2.4(a)) and the opti-
mization is located where their lines join. The three differences between
B and A are also described in the order in which the differences appear,
working away from where the lines join. C is added next (Figure 2.4(b))
and again the three changes from B are described and the optimization
provided. Only two possibilities for joining D are shown here in Figure
2.4(c). Since joining D to C requires fewer changes, this is the chosen tree
(Figure 2.4(d)).

2.3 Transcriptome

As previously described in Chapter 1, the total collection of mRNA and
their alternative splice forms represents the transcriptome of a cell or or-
ganism. The transcriptome can be considered the complete set of instruc-
tions for deriving all the different proteins found in a cell or organism. By
analysing the transcriptome, it may be possible to discover new proteins
that are present in specific tissues or produced only by certain cells under
certain conditions. If the genome provides us with the complete set of
genes of a cell or organism, and the proteome tells us all of the proteins
that can be produced by the genome, the transcriptome is the bridge be-
tween the two. If there are more proteins than genes, something must
be happening between the genome and proteome to make this possible.
By measuring the transcriptome during certain cell development stages,
it is possible to identify which genes are switched on or are switched off

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

TRANSCRIPTOME 41

11110

1000

(a)

B A

a−>c
a−>c

a−>g

11000

(b)

B A

00110

00110

a−>c

a−>c g−>a
C

a−>t

(c)

B C D A

(d)

B C D A

a−>c
a−>c

g−>t D CB A

A a

a c c g

c c c c

c c c c t

a

a

a

a a a

B

C

D

Figure 2.4 Constructing a phylogenetic tree from example DNA sequences for four
organisms A, B, C and D, using the Wagner method

at various points during the process. Also, if the transcriptome can be
measured during the development of stem cells, it may also be possible to
identify exactly how and when genes are switched on and off so that the
cells specialize to become one of the 200 or so different types of cell found
in the human body. Such measurement will help answer one of the most
profound mysteries in molecular biology, since there is no ‘central con-
trol’ of stem cell division that specializes cells. Specialization of cells must
therefore be through some form of signalling pathway through genes.

Interest in the transcriptome (the total set of transcripts possible from
the genome, including alternative splice variants) has grown significantly
since the arrival of a new technology that allows us to measure both
the amount and nature of these transcripts. DNA arrays are devices that
contain DNA probes that allow complementary mRNA or complemen-
tary DNA (cDNA) samples to be bound to the probes. Assume for the

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

42 INTRODUCTION TO PROBLEMS AND CHALLENGES

moment that the probes are short fragments of each gene that can be
found in the genome of an organism, and that the mRNA or cDNA sam-
ples are taken from cells or tissues of that same organism under some
condition. If the samples are applied to the DNA array and ‘stick’ to
some probes but not others through complementary base pairing, that
tells us which genes are expressed in the sample and which genes are not
expressed in the sample (Figure 2.5).

The total mRNA from an individual (cell or tissue) is extracted and
purified. Since mRNA does not remain stable for long, cDNA versions
of the mRNA are reverse transcribed so that the mRNA and cDNA form
a stable structure. The strands are then further amplified or transcribed
to generate further cDNA or mRNA (called cRNA) strands before being
‘labelled’. Typically, samples from one cell or individual are labelled green
and samples from another cell or individual red to allow for differential
comparison between the samples. The samples are then fragmented into
smaller substrands, and the gene chip/microarray is applied. The gene
chip/microarray will contain probe nucleotide sequences that uniquely

Total mRNA from
an individual

cDNA Labelled cRNA

Reverse
transcription

Fragmentation

Hybridization

Fragmented,
labelled cRNA

Gene chip
expression
array

Wash and
stain

Scan and
quantize

Store results in
database

In vitro
transcription

Figure 2.5 Microarray and gene chip measurement (see http://www.affymetrix.com)

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

TRANSCRIPTOME 43

detect the presence of its cDNA or mRNA counterpart, if it is present in
the sample. The samples are washed over the gene chip/microarray and
allowed to ‘hybridize’ (form short complementary base pairings) with
the probes. The gene chip/microarray is then ‘read’ with a laser that is
tuned to measure probes hybridized with green or red samples. If both
samples contain equal amounts of the same mRNA/cDNA, the probe
will fluoresce an orange/yellow colour. If one of the samples contains
more of one form of mRNA/cDNA than another, it will fluoresce either
green or red, depending on which sample it came from. If there are no
mRNA/cDNA samples for a particular probe, the probe will reflect black
or the background colour of the gene chip/microarray. Because the laser
reads probes at a certain frequency, the intensity of reflected light can
be converted into measures of amount of mRNA/cDNA and stored in a
database for further analysis.

There are two main types of DNA array: microarray and DNA or gene
chip, depending on how probes (nucleotide sequences) are put onto the
chip. Microarrays use presynthesized DNA (about 100 bases) for prob-
ing, whereas DNA chips use in situ synthesized oligonucleotide probes
(25 bases for Affymetrix gene chips). More recently, types of array are
distinguished by the amount of genes that can be measured, since DNA
chips allow for increased numbers of probes due to their shorter length
(between 30 000 and 4 million probes for DNA chips, as opposed to
about 20 000 probes for microarrays). Microarrays generally use spot
technology, whereby a robot places spots (roughly 0.1 µm to 0.5 µm)
of DNA on a glass slide (the microarray) and each spot is a DNA coun-
terpart to one of the mRNAs to be measured. These DNA spots act as
probes and are generally between 100 and 200 bases long. The advantage
of this method is that specialized microarrays can easily be fabricated to
search for specific genes. However, given the size of the spots, there are
limits on the number of probes that can be put onto one spot of the mi-
croarray. For this reason, the use of smaller probes is generally preferred,
and these are put on the chip using photolithographic techniques adapted
from semiconductor technology. The probes are built ‘bottom-up’ and in
parallel in the same way that circuits are, so that nucleotides are added
to multiple growing chains simultaneously. A ‘spot’ (‘well’ or ‘cell’) on a
gene chip can contain a thousand probes for one specific gene.

After the mRNA samples (control and experiment) are reverse tran-
scribed into cDNA, labelled (dyed) and allowed to hybridize with the
probes on the microarray or gene chip in the form of cRNA, lasers are
used to produce an emission signal for each dye. It is not yet possible
for computers to be linked directly to gene chips and microarrays so that

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

44 INTRODUCTION TO PROBLEMS AND CHALLENGES

the amount of mRNA in a sample can be read directly from the probe
cells. DNA probes and mRNA fragments are far too small to be read in
this manner. Instead, the array or gene chip has to be converted into a
fluorescent image which is sufficiently detailed at the pixel level to allow
inferences to be made about the quantity of sample in a cell. Confo-
cal array scanners are currently the most popular method of measuring
the fluorescence. A gene chip probe cell is currently beween 25 µm and
50 µm, and pixel sizes used by confocal lasers are about 5 µm. Confocal
lasers can therefore produce six-by-six or eight-by-eight pixel images of
a gene chip well or spot. Each pixel will have a certain colour attached to
it, and the overall ‘colour’ of the spot or cell is determined by the colour
of the individual pixels making up the spot. For instance, if two colours
are used (say, red for experimental mRNA sample and green for control
mRNA sample), and cRNA of both samples hybridize with the probes
of a cell, all pixels will give off a yellow/orange diffraction pattern. If,
however, mRNA of only one sample is present and hybridizes with the
probes in a cell, a diffraction pattern which represents red or green will
be produced which is broken down by the pixel matrix (Figure 2.6 (1)).
The outermost pixels are removed from analysis and the intensity of pix-
els plotted to arrive at an average intensity value for the cell as a whole
to determine whether enough sample is present in a cell.

Quantitiation (converting fluorescence intensities into amounts of
sample) usually results in large numbers that are conventionally con-
verted into log2 ratios. For instance, if after laser analysis there are 200
transcripts of red cRNA for a gene and 10 000 transcripts of green cRNA,
log2(10 000/200) = 5.64. If the expression values are identical, the result
is 0. Minus log2 values would signify more red cRNA than green. Such
log2 ratios are easier to work with as well as provide absolute values,
even if they have to be subsequently normalized to overcome skewed fre-
quency distributions. Interpreting log2 ratios can, however, be difficult.
Also, determining how reliable both log2 ratios and raw intensity values
are is difficult. Different amounts of the two samples and of labelling
concentrations may have been used, for instance, which will affect the
quantitiation process.

Alternatively, Affymetrix gene chips use a perfect-match/mismatch
strategy to help identify the reliability of the readings as well as produce
an absolute call value for each gene which expresses whether the gene
probed for is ‘present’, ‘absent’ or ‘marginal’ (Figure 2.6 (2)). Affymetrix
use two types of probe in a cell: a 25-nucleotide sequence which is identi-
cal to a fragment of a sample mRNA and a 25-nucleotide sequence which
is identical to the probe except that the middle base is different. If the

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

TRANSCRIPTOME 45

8 4
d1 = 2
d2 = 1
d3 = −2
d4 = 0.5
d5 = 0.5

|d1| = 2
|d2| = 1
|d3| = 2
|d4| = 0.5
|d5| = 0.5

a4 = 0.5
a5 = 0.5
a2 = 1
a1 = 2
a3 = 2

3 1 6
10

PM

Intensity of pixels

Number
 of

 pixels
Average
intensity

MM

Start values

5 1 1.56.5

(c) Sort in
 increasing order

(b) Convert to
 absolute values

(a) Calculate MM−PM

(1)

(2)

r4 = 1.5
r5 = 1.5
r2 = 3
r1 = 4.5
r3 = 4.5

r1 = 4.5
r2 = 3
r3 = 4.5
r4 = 1.5
r5 = 1.5

S1 = 4.5
S2 = 3
S3 = −4.5
S4 = 1.5
S5 = 1.5

S1 + S2 + S4 + S5 = 10.5

(f) Their signed
 ranks

(g) Sum the positive
 signed ranks

(e) Place ranks back
 in original order

(d) Assign ranks

(h) Enumerate all the possible outcomes and sum positive ranks only:

1 −1.5 −1.5 −3 −4.5 −4.5 0
2 1.5 −1.5 −3 −4.5 −4.5 1.5
3 −1.5 1.5 −3 −4.5 −4.5 1.5
4 −1.5 −1.5 3 −4.5 −4.5 3

26 −1.5 −1.5 3 4.5 4.5 12
27 1.5 1.5 3 4.5 −4.5 10.5
28 1.5 1.5 3 −4.5 4.5 10.5
29 1.5 1.5 −3 4.5 4.5 12
30 1.5 −1.5 3 4.5 4.5 13.5
31 −1.5 1.5 3 4.5 4.5 13.5
32 1.5 1.5 3 4.5 4.5 15

(i) All signed ranks above
10.5 are given the weight
1 (5 in the table) and
signed ranks equal to
10.5 (4) are given the
weight 0.5. Now calculate
the p value:

Sum

P (10.5) = (1∗5 + 0.5∗4)/32
 = 0.21875

(j) Since the p value is not
significant (not below
0.05), this gene is absent.

...

Figure 2.6 Affymetrix gene chip technology

base in the middle of a probe sequence is not complementary to the base
in the middle of the sample sequence, the repulsion forces between just
these two bases should be sufficient to ensure that the sample sequence
does not hybridize with the probe sequence. Mismatch probes therefore

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

46 INTRODUCTION TO PROBLEMS AND CHALLENGES

allow for checks on non-specific cross-hybridization in the sample. That
is, outside of the human body mRNA nucleotides are not always guar-
anteed to bind to their complementary base pairs, due to heat differences
and degradation, for instance. These mismatch probes are also used to
generate absolute call values in that the fewer mismatches there are, the
more confidence one has in the accuracy of the perfect matched figures.
In Figure 2.6 (2) a gene is probed across several ‘probe pairs’ (typically
10–15 on Affymetrix gene chips), where each pair is made up of ‘perfect-
match’ probe sequences and ‘mismatch’ probe sequences. To determine
whether a gene is present in a sample, Wilcoxon’s Signed Rank Test is
used. Imagine there are five probe pairs for a gene (each probe pair con-
sists of a perfect match and a mismatch beneath it) and the values are as
indicated in Figure 2.6 (2), where these values represent the number of
samples hybridized in each of the cells. The first step is to calculate the
difference between each pair (a), followed by a conversion to absolute
values (b), which are then sorted and ranked (c, d). The ranked values
are placed back in their original order (e) and re-allocated their signs (f).
The sum of the positive signed ranks is calculated (g) and a full enumera-
tion of all possible signed outcomes is listed (h), with only positive ranks
summed. All signed ranks above the sum calculated at step (g) are given
the weight 1 and equal to the sum the weight 0.5 (i). The p value is then
calculated as the sum of the weighted values divided by the total number
of enumerated outcomes. If the value is below 0.045 a value of ‘present’
is attached to the gene, if the value is above 0.055 a value of ‘absent’ is
returned, and otherwise ‘marginal’.

Gene chips now exist for measuring the expression levels of all genes in
the human genome. They can also be used to check whether genes are be-
ing expressed in specific tissue and which genes are expressed in response
to drugs. One particular application of gene chips and microarrays is in
the identification of single nucleotide polymorphisms (SNPs) that express
common genetic variances among people, caused by a single nucleotide
change every 300 bases or so in both the coding and non-coding parts
of the human genome. For a nucleotide change to be an SNP, it should
occur in at least 1 per cent of the population, and it is believed that,
while SNPs do not affect the normal function of cells, they do affect the
way that individuals react to drugs or predispose individuals to certain
diseases. Microarrays and gene chips can be purpose-designed to identify
SNPs and detect their presence in individuals.

While DNA arrays and gene chips are among the most exciting ge-
nomic tools to have been developed within the last few years, it has to

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

TRANSCRIPTOME 47

be remembered that mRNA levels do not always correlate with protein
levels. It is not currently known how much mRNA actually makes it to
protein.

Alternative splice variants of genes that are not measured on a DNA
chip mean that a gene may not be accurately measured. Also, DNA chips
cannot identify post-translational modifications of a protein. However,
perhaps the biggest problem with DNA chips concerns current gene ex-
pression analysis techniques. The sheer volume of data (gene expression
datasets can be several megabytes) leads to the need for fast analytical
tools; but more importantly, there are many more attributes (genes) than
records (samples). Typically, 12 000 to 25 000 genes are measured for
each sample (subject or individual), and only 50 to 100 samples are col-
lected. In database terms this leads to a hugely sparse data space. Gene
expression analysis (G) can be defined to be concerned with selecting
a small subset of relevant genes from the original set of genes (the S
problem) as well as combining individual genes in either the original or
smaller subsets of genes to identify important causal and classificatory
relationships (the C problem). That is, G = S + C. In later chapters it
will be shown how artificial intelligence techniques are making promis-
ing progress in analysing gene expression data and mining the data for
useful knowledge.

The analysis problem becomes even more acute when dealing with
temporal gene expression data, i.e. the repeated application of DNA
chips to measure the transcriptomic state of an individual over time. So
far it has been assumed that DNA chips are used to measure an individual
just once and that the database will consist of several samples, measured
once, where each sample falls in a clearly designated and independently
observed class (e.g. a cancerous sample versus a normal one). Imagine
that an individual cancer patient’s mRNA is measured at time 0 and then
a drug added which, it is believed, will ‘cure’ the patient. The individual’s
mRNA is measured after 30 min, then 1 h, then 2 h, then 4 h, etc., to
see how the drug is affecting gene expression of the immune system and
whether cancerous cells are being targeted for attack by the immune
system. What is of interest here is the network of gene activation over
time, as expressed not just for one patient but for several patients. The
task is to ‘reverse engineer’ this gene network from not just one dataset
but several. Reverse engineering means identifying which genes at one
time point affect which other genes at the next time point. Given the large
numbers of genes measured, if each gene is allowed to affect every other
gene, a search space will rapidly be generated that is too complex for

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

48 INTRODUCTION TO PROBLEMS AND CHALLENGES

computers to analyse. If a gene at one time-step is restricted to affecting
only five other genes at the next time step, or a gene at a subsequent
time-step to be affected by only five other genes at the previous time-
step, the question is how to identify just these small numbers of affected
or affecting genes from the huge number measured. Reverse engineering
gene networks from gene expression data, where there is confidence that
the correct causally influencing and causally influenced genes have been
identified, is one of the biggest unsolved problems in bioinformatics.

Ethical considerations

There is also an ethical dimension to gene expression analysis. First, mea-
suring the gene expression of an individual gives us information on not
just that individual but also that individual’s closest relatives. So while
an individual may well permit their gene expression to be measured and
a genetic profile for that individual to be stored in a database, there are
fundamental questions about the rights of that individual’s relatives to
have information about their genetic profiles not stored in a database.
Identifying through gene expression analysis that an individual has a
predisposition to a particular inheritable disease provides information
about other members of that individual’s family. Secondly, while it may
be acceptable to measure the gene expression of individuals who are suf-
fering from a disease, there are fundamental questions concerning the
scope of gene expression analysis. Should embryonic stem cells be mon-
itored for gene expression, for instance, so that important information
is obtained about how cells are differentiated during the early stages of
fetal development? One of the most puzzling of all mysteries in biol-
ogy is the way in which, from one fertilized cell, a multi-trillion cellular
organism called a human results, where billions of cells have somehow
‘agreed’ to express only certain genes that allow them to form tissue and
cooperate with each other. The fertilized cell and its daughter cells after
initial division within a few hours are totipotent, i.e. they have the abil-
ity to become any cell in the body. After about four days some of these
cells become a blastocyst (hollow sphere) and have lost their totipotency,
whereas the other cells inside the blastocyst form an inner cell mass.
These inner cells are pluripotent in that they have the ability to become
one of several different types of cell. After further division pluripotent
cells become multipotent, whereby a multipotent brain cell, for instance,
has the ability to become any one of the different types of brain cell
(Figure 2.7).

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

TRANSCRIPTOME 49

Red cells

Blood stem
cells

Eosinophils

Fertilized cell

Totipotent cells

Pluripotent cells

Neutrophils
Basophils Monocytes

Motor
(multipolar)

Neurons Glial cells

Brain stem
cells

Interneurons
(bipolar)

Sensory
(unipolar)

Astrocytes Oligo-
dendrocytes

Ependymal

...

...

...

...

...

...

Figure 2.7 Embryonic stem cells

Currently there are two methods for developing pluripotent cells: from
inner cell mass at the blastocyst stage and from fetal tissue from termi-
nated pregnancies. While DNA chips provide an unprecedented oppor-
tunity to measure early gene expression (within a few hours of concep-
tion), this may mean that embryos are ‘farmed’ for research purposes.
The promise of stem cells lies in their possible ability, when located next
to damaged tissue, to become one of the cells in that tissue by expressing
the same genes as those expressed in the tissue. The mechanisms whereby
this happens are not known, but the potential to repair parts of the body
where cells no longer divide in sufficient numbers to overcome damage
(such as the brain or liver) is huge. However, before stem cells can be
used there needs to be an understanding of their gene expression and dif-
ferentiation mechanisms. Different countries are taking different ethical
and legislative stances on this important ethical topic.

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

50 INTRODUCTION TO PROBLEMS AND CHALLENGES

2.4 Proteome

Secondary and tertiary structure prediction

Proteins are the end result of translation of mRNA by ribosomes. Once
protein sequences of amino acids leave the ribosomes they fold in com-
plex ways to achieve a ‘native’ state or conformation in the cell. The na-
tive state of a protein is a highly stable three-dimensional structure that
helps determine its biological function. In other words, a protein cannot
function unless it folds in the right way. For instance, catalytic proteins
must fold in such a way that they can lock onto another molecule (sub-
strate), thereby lowering the energy threshold required to start a reaction
in the substrate. Once the reaction takes place, the catalytic protein is
released to find other molecules to attach to so that further reactions can
take place. If the catalytic protein misfolds, it will not be able to start the
catalytic reaction. In particular, the active site of the protein which locks
onto the appropriate section of the target molecule (the substrate) to start
a reaction may not be revealed and so the protein cannot function.

Protein misfolding is associated with several diseases, and to under-
stand the nature of the disease at the molecular level involves under-
standing the way that amino acids both locally and distantly affect the
folding. That is, while it may not be possible to predict how a specific
sequence of amino acids folds locally, once it folds it comes into contact
with other regions of amino acids elsewhere in the sequence. Folding is
determined by the chemical and physical properties of the amino acids
making up the protein, but such chemical and physical explanations of
folding have to take into account ‘long distance’ relationships between
different parts of the same sequence. Determining the way that proteins
fold into specific shapes is called the ‘protein folding problem’. Labora-
tory experiments have shown that if a protein is gently denatured (that is,
unfolded by, say, raising the temperature or changing the salt concentra-
tion of the surrounding fluid) and then allowed to refold, it resumes its
original structure, thereby demonstrating that the ability of the protein
to fold into its correct shape is intrinsic (all the information required to
fold a protein is in the protein constituents).

While one obvious use of computers in bioinformatics is the storing of
DNA sequence information and constructing the correct DNA sequences
from fragments identified by restriction enzymes (enzymes which break
up the DNA at certain points), protein sequences and the polypeptide3

3 The term ‘peptide’ is used to refer to short sequences of amino acids, while the term ‘polypep-
tide’ refers to sequences of length 50 or more.

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

PROTEOME 51

sequences that make up that protein also need to be stored. New protein
sequences are being added to protein databases as a result of analysing
mRNA sequences, where redundantly transcribed DNA (introns) have
been removed, and by translating codons via the genetic code into letters
of the amino acid alphabet. However, these linear sequences of amino
acids (polypeptide sequence) do not tell us anything about the structure
of the protein or how it folds. The protein folding problem is important
because it takes a lot of effort to determine the structure of an actual pro-
tein. A real protein has to be to denatured (unfolded) so that its amino
acid sequence can be described, but denaturing a protein and sequencing
its amino acid content are much more difficult than simply denaturing a
protein. In the act of denaturing the structure of the protein is affected
so that information is lost about the structure as amino acids making
up the protein are sequenced. Identifying the structure of a protein re-
quires complex measurement, typically through X-ray crystallography or
nuclear magnetic resonance (NMR) spectroscopy techniques, neither of
which may be readily available to biologists. In any case, not all proteins
are susceptible to crystallization, and NMR is constrained to deal with
small proteins because of the computational costs involved in trying to
model complex proteins. Finally, to determine the structure of a protein
means removing it from its natural environment – the cell or organism.
There is no guarantee that a protein being experimentally investigated in
vitro will have the same structure as in vivo. As a consequence, the num-
ber of experimentally determined protein sequences is far fewer than the
number of protein sequences that have been ‘translated’ by a computer
from DNA and mRNA sequences.

The structure of a real protein is conventionally described in four ways
(Figure 2.8). The primary structure of a protein (Figure 2.8(a)) is the se-
quence of amino acids produced at ribosomes. Since there are 20 amino
acids, the primary structure describes the precise order of amino acids
in the protein. The secondary structure of a protein (Figure 2.8(b))
describes those parts of the primary structure (subsequences of amino
acids) that fold into regular and repeated patterns, such as α-helices,
β-sheets, or turns (see Figure 2.9 for conventional computer-generated
graphical ways of describing secondary structure). The tertiary structure
(Figure 2.8(c)) consists of those elements of the secondary structure that
build more complex units, such as an α−β motif, and provide a three-
dimensional shape of the protein. The tertiary structure of enzymes is
typically a compact, globular shape, for instance. Finally, many pro-
teins consist of more than one polypeptide chain. The quaternary struc-
ture of a protein (Figure 2.8(d)) is a description of how several separate
polypeptide sequences have come together to form a complex protein.

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

52 INTRODUCTION TO PROBLEMS AND CHALLENGES

AA AA AA AA AA

AA AA AA AA AA AA AA AA

(a)

(b)

(c)
(d)

Turn

Helix

Turn
Sheet

Helix

Amino acid with backbone Peptide

Polypeptide

α-helix

β-sheet

Quaternary structureTertiary structure

.....

Figure 2.8 Protein structure

For instance, human haemoglobin consists of four separate polypeptides
that come together to form a complex molecule that takes up oxygen
from the lungs and delivers it to the cells of the body. These four pep-
tides result from the translation of four separate genes. For experimental
biologists, identifying all four levels of structure from an actual protein is
very difficult, since not all parts of the protein are available for analysis.
A real protein has to be dissected into smaller parts so that amino acids
hidden by folds are revealed. There is therefore a great need to work
from primary structures of proteins (as revealed by mRNA) to the three-
dimensional and quaternary structure of the protein. Currently, this task
is proving a great challenge to computer scientists because of the com-
plexity of predicting secondary, tertiary and quaternary structures from
primary structures. Folding arises because of basic charges (attraction
and repulsion) of atoms and molecules, and modelling these for long
sequences of amino acids is proving difficult.

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

PROTEOME 53

AA
AA AA

AA
AA

AA AA
AA

AA

AA AA AA AA AA
AA

AA
AA

AA

AA
AA

AA
AA

AA
AA

AA
AA AA

AA
AA

AA
AA

AA

Turn

Secondary structure consisting of α-helix, turn, β-sheet, turn, β-sheet,
turn, α-helix

α-helix

β-sheet

Figure 2.9 Computer visualization of a secondary structure

There are currently three approaches to protein folding prediction.
Comparative modelling (also known as modelling by homology or
knowledge-based modelling) uses structural data from experimentally
determined protein sequences. An amino acid alignment is first made be-
tween protein sequences with unknown structure (typically derived from
DNA or mRNA translation by the computer) with protein sequences with
known structure. Then where the alignment agrees, the conformation of
the sequence with known structure is allocated to the sequence with un-
known structure for that part of the alignment. The main problem with
comparative modelling is that there can be significant similarities between
two proteins with known structure where the structures are significantly
different from each other. Similarity of primary sequence is therefore no
guarantee of similarity of structure and therefore of function. Similarly,

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

54 INTRODUCTION TO PROBLEMS AND CHALLENGES

there are also examples of two proteins with known structure with similar
function where the primary sequence information is significantly differ-
ent in each sequence. Typically a threshold value of 30 per cent sequence
identity is required to be exceeded before two sequences are considered
homologous for modelling. While this figure may appear to be low, the
argument is that the three-dimensional structure of proteins is conserved
to a greater extent than the primary sequence. That is, a high degree of
primary sequence similarity between a protein with known structure and
a protein with unknown structure is not needed, since the function of a
protein, as given by its structure, is more likely to be preserved through
its shape than its amino acid sequence. The homologies being searched
for are assumed to reflect structurally conserved regions of the protein.

Fold recognition, or threading, techniques are similar to homology
modelling techniques but use a database of proteins with known structure
and folds (called templates) against which to compare the protein of
unknown structure. A scoring function is used to rank the folds and the
folds with the best scores are then adopted for the protein with unknown
folds and structure.

The final method is ab initio, where a structure is predicted for a pro-
tein with unknown structure by using physical principles of folding. One
of the main assumptions of this method is that the native structure of a
protein reflects its global free energy minimum, and the task of ab initio
methods is to search the space of possible conformations of the amino
acids (residues) making up a sequence to find optimal conformations
that achieve low energy levels. While some ab initio methods work at
the atomic level for residues, in practice residues are modelled using only
a few interaction centres within the residue. Many molecular dynamics
optimization methods now exist, using lattice-based enumerations and
diffusion equation methods. The basic approach is to minimize the en-
ergy of the system, add a structural change, minimize the energy, add
a structural change, and so on. Ab initio methods may have to be used
when suitable template structures are not available.

Problems with ab initio methods include a minor conformational
change at one residue having major implications for the entire sequence,
which may not be captured by the simulation models used. For instance,
a bond between two residues may be rotated for local minimization of
energy, but given that the structure as a whole is three-dimensional there
may be unfavourable effects on the whole structure that cannot be cap-
tured by the simulation. Also, the complexity involved in predicting the
structure of a large protein may be too hard for a computer. Nor has it

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

PROTEOME 55

escaped the attention of some researchers that large proteins naturally
fold within seconds of translation, whereas computer models take hours
or even days to predict the structure of less complex proteins.

Protein folding is perhaps the biggest problem in bioinformatics cur-
rently. Even if good techniques and methods for predicting the structure
of proteins from primary sequences are discovered, this may not reveal
anything about how the biological function or activity of that protein is
carried out. There is also increasing interest in the actual stage-by-stage
process by which a protein naturally folds to identify causes of misfold-
ing. Current protein folding methods may not actually reflect this natural
folding process. Yet there is increasing evidence that many diseases, such
as Alzheimer’s, cystic fibrosis, sickle cell anaemia, bovine spongiform en-
cephalopathy (BSE) and its human equivalent Creutzfeldt–Jakob disease
(CJD), are due to misfolding. It is currently estimated that of the several
hundred thousand protein sequences stored in databanks (derived from
DNA and mRNA), only about 1 per cent have an experimentally deter-
mined structure. As genome projects provide increasingly more protein
sequences in their databases, this mismatch between proteins of known
structure and unknown structure is bound to grow. In silico methods of
accurately predicting the structure of proteins are still at an early stage of
development and present one of the most profound challenges in bioin-
formatics.

Protein identification

Another current challenge in bioinformatics is to determine how large
the human proteome (the total collection of all proteins produced by
the genome) actually is. While many prokaryotic cells have small num-
bers of genes in comparison to the human cells (about 5000, typically),
there is little evidence of significant alternative splicing. However, post-
translational modification of proteins as they emerge from the ribosomes
may increase the number of proteins so that anywhere between 10 000
and 20 000 proteins are actually produced by a prokaryotic cell. For
a human (eukaryotic) cell containing 30 000 genes, it is currently es-
timated that each gene can be alternatively spliced anywhere between
three and 100 times. Even assuming the lower figure, that gives about
90 000 different polypeptide sequences. However, several different types
of post-translational modification can be carried out, such as cleavage
of polypeptide sequences at different points to give different proteins,

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

56 INTRODUCTION TO PROBLEMS AND CHALLENGES

including removal of the initial methionine residue. Many proteins are
inactive precursors that are activated under appropriate physiological
conditions. Their task is to be present in the body should a situation
arise when they are suddenly required, for instance, enzymes for forming
clots in the blood in the case of a wound. Such proproteins are typically
activated by the removal of certain amino acids at the ends of a protein,
allowing the protein to function by revealing the active site of the pro-
tein. The task of proteomics is to identify not just all the different proteins
that can be produced by a genome but also to detect those proteins that
are associated with disease because of misfolding of proteins or different
amounts of protein.

The biggest problem for proteomics currently is a suitable technology
for measuring the variety and abundance of protein in a cell or organism.
The most common form of measurement is protein electrophoresis. Pro-
teins have an electrical charge, and the basic method is to place all protein
from a sample on a gel and apply an electrical current to the gel so that
the proteins move to different parts of the gel depending on their elec-
trical charge; they then form bands that indicate the relative proportion
of each protein fraction. Proteins are separated because at some point in
the migration there is no net charge, and the protein is then stationary.
While this form of measurement is appropriate when comparing different
samples, the technology does not allow for the individual identification
of proteins in a sample. Also, small proteins move through the gel more
quickly than large proteins and may end up in regions of the gel that
cannot be measured accurately because of smearing or distortion. Many
proteins also react unpredictably with the gel and may migrate to wrong
parts of the gel matrix. Gel electrophoresis also requires a great deal
of expert human manipulation, leading to increased possibility of error.
However, automated protein identification techniques using gels are in-
creasingly appearing on the market. Nevertheless, gel-based techniques
by themselves may not be sufficiently accurate to identify individual pro-
teins.

New techniques being explored currently for individual protein identi-
fication include peptide-mass fingerprinting and peptide sequencing. The
former uses proteases (special proteins that cut other proteins) to dissect
specific proteins into fragments that have a unique ‘fingerprint’ when
subjected to NMR spectroscopy techniques. The correct identification of
these fingerprints requires access to a database of protein fragments and
their signatures under specific NMR spectroscopy conditions. However,
as more proteins and their fragments are included in such databases, the

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

INTERFERENCE TECHNOLOGY 57

chances of finding unique fingerprints begin to worsen! Ideally, it would
be helpful if a protein could be sequenced in the same way that a gene can
be sequenced (through complementary base pairing techniques). Amino
acids do not have complements, however. Peptide sequencing attempts to
identify the amino acids of a protein or protein fragment either by work-
ing from one end of the fragment (terminus sequencing), one residue at
a time, by cutting the residue from the sequence and then using complex
methods for identifying the residue that has been cut off, or if the ter-
minus is not visible by cutting the sequence into a number of fragments
and then identifying each residue, as before (internal sequencing). Again,
NMR or other mass spectrometry techniques are used for identifying
residues, and many biologists do not have easy access to such facilities.
Also, fragmentation processes are not sufficiently advanced to ensure
that a protein is cut at the correct locations.

High-throughput peptide sequencing analogous to nucleotide high-
throughput sequencing is a fundamental requirement for identifying
novel proteins and novel ways in which proteins are translated from
their mRNA sequences. The future bioinformatics problem, once high-
throughput protein identification techniques are made available, is to
map the actual proteins and their sequences found in cells with genome
databases. Given the variety of alternate splicing of mRNA and post-
translational modifications, the identification of exactly which gene is
the source for which protein sequences is not likely to be an easy task,
especially given the redundancy in the genetic code (several different ways
of DNA mapping onto amino acid).

2.5 Interference technology, viruses
and the immune system

Interference technology

Proteomics is considered one of the most important ways of understand-
ing gene function. That is, even if a gene is fully sequenced and located
on a chromosome, this does not mean that there is a full understand-
ing of the gene unless it is known what its translated products do. So
even if there is full knowledge of a genome and full knowledge of all the
proteins derivable from that genome, a full understanding of the genome
and proteome will only come with a detailed understanding of how genes

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

58 INTRODUCTION TO PROBLEMS AND CHALLENGES

affect other genes through proteins, of how proteins affect other proteins.
While the genome is static, in that once it is characterized it can be as-
sumed to be constant, the proteome is dynamic and reflects the state of
the cell and the conditions under which it survives. Some proteins are
produced only when the cell’s environment is stressed (e.g. by heating).
It is possible that there is a specific stress gene for that condition that only
comes on when the stress condition is apparent, but it is also possible
that the cell deals with the stress either by producing more quantity of
a protein or by modifying a product of an already expressed gene. One
way to study the effects of proteins is through ‘knock-out’ technology
that effectively silences genes. If genes can be silenced under controlled
conditions, the effects of the absence of the gene on the proteome can
be studied. While one method for silencing genes is to look upstream
of a gene and at its transcription regulatory elements to see if promoter
and enhancer regions can be blocked, not enough is known currently
about these regions to determine effective gene silencing mechanisms at
the transcriptional level. However, interference technology provides a
mechanism for regulating the translation of mRNA even if transcription
takes place.

Antisense technology is an mRNA interference technology that blocks
the translation of ‘sense’ mRNA (see Figure 1.5) and is based on the idea
of introducing an antisense gene or antisense RNA into cells. The effect
of antisense technology has been known for over 20 years but its mecha-
nisms were not understood. Introducing a short piece of antisense RNA,
that is, a sequence that is complementary to part of an mRNA sequence,
produced the obvious result that the gene giving rise to the mRNA was si-
lenced due to its mRNA being partly double-stranded when the antisense
RNA paired with the appropriate sequences of complementary bases in
the transcribed mRNA. Such double-stranding was assumed to prevent
the ribosomes from effectively translating the sequence of amino acids in
the mRNA. In other words, it was assumed that the ribosomes ‘jammed’
when the mRNA transcript was found to contain double-stranded codons
rather than the linear sequence of single-stranded codons expected. How-
ever, it was also found that introducing a sense RNA subsequence (that
is, a subsequence that is identical to part of the mRNA) produced the
same silencing effect. Sense RNA cannot pair with sense mRNA, since
the bases are identical. Finally, it was also discovered that introducing
a small section of double-stranded RNA was more effective at silencing
the target gene than introducing either a sense or antisense RNA strand.
To understand the mechanisms at work, viruses and the immune system
will need to be explored.

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

INTERFERENCE TECHNOLOGY 59

Viruses and the immune system

A virus is not a living entity or cell, since it lacks many of the essential
components of a cell, such as translation machinery and cellular trans-
port systems. It is between 20 and 100 times smaller than a typical single
cell organism and attacks all types of cell or organism. Viruses that attack
bacteria are called bacteriophages. A virus is a piece of genetic sequence
(either DNA or RNA) with some proteins, wrapped up in a protein coat
(capsid) and with the ability to recognize specific prokaryotic and eukary-
otic cells through sites on the capsid that are complementary to receptors
on the target cell. When a virus recognizes the cell it is specifically tuned
for, it attaches itself to the cell and injects its genetic material (DNA
or RNA sequence together with any viral proteins). The cell processes
(transcribes and translates) the viral genetic material which contains the
information on how to make components of the virus (such as the capsid,
recognition sites and the genetic material). As the components are pro-
duced, they assemble into complete copies of the original virus (virions)
and are released from the cell to target other cells. The host cell’s tran-
scription and translation machinery may be so overcome with the task
of reproducing the virus that it stops making the essential components
required to enable it to survive, or the virions are released from the cell
by puncturing a hole in the membrane of the cell, thereby killing the cell
as its contents leak out.

Viruses come in many different forms, and the Baltimore Classifica-
tion identifies viruses according to the nature of the genetic material they
contain. Viruses can contain, for example, (a) double-stranded DNA (typ-
ically 5000 base pairs (bp) to 300 000 bp), (b) single-stranded DNA, (c)
double-stranded RNA, (d) positive sense single-stranded RNA, and (e)
negative sense single-stranded RNA. Of these, the positive sense single-
stranded RNA class is the best known to humans, causing the common
cold (rhinoviruses) and meningitis (enterovirus). A viral infection is dan-
gerous to an organism because, if the infection goes unchecked, a suffi-
ciently large number of cells can be killed which leads to the organism
as a whole dying. An example of HIV (human immunodeficiency virus,
considered to be the main cause of AIDS (Acquired Immunodeficiency
Syndrome)), is provided in Figure 2.10.

The HIV virion consists of two single-stranded negative sense RNA
sequences (about 9000 bases each) containing at least nine genes, plus
three proteins – a reverse transcriptase, an integrase and a protease (Fig-
ure 2.10(a)). The HIV virion attaches itself to lymphocytes (helper and
killer T cells) of the immune system through the CD4 and CCR5 receptors

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

60 INTRODUCTION TO PROBLEMS AND CHALLENGES

Two copies of single stranded negative RNA

Reverse transcriptase

Viral
content

Integrase

(c) Reverse
 transcriptase

Normal DNA

Ribosome

Nucleus

Lymphocyte
membrane

Viral DNA (e) Viral mRNA

(f) Viral polyprotein

(h) New protease,
 integrase, etc.

(i) New virions
 for release
 from cell

Lymphocyte
(T cell)
nucleus

Normal DNA

Chromosome

(d) Integrase

(g) Protease

CD4,CCR5
receptors
on cell Other HIV virions

attached to cell

(b)

(a)

Protease

HIV virion with
recognition sites

Figure 2.10 The life cycle of HIV

on the surface of the cell (Figure 2.10(b)). The viral content (RNA and
proteins) is injected into the cell, and the reverse transcriptase makes a
positive copy of one of the negative strand viral RNA to form a double
strand (Figure 2.10(c)). The viral integrase takes the double strand into
the nucleus and splices it into the cell’s DNA (Figure 2.10(d)). Normal
cellular machinery then transcribes (Figure 2.10(e)) and translates the vi-
ral mRNA to form one long viral polyprotein sequence (Figure 2.10(f)).
The third viral protein, protease (Figure 2.10(g)) has the task of cleaving
the viral polyprotein into constituent parts (new copies of viral protein,
capsid, etc., Figure 2.10(h)) so that new virions can be assembled for
further infection (Figure 2.10(i)).

The human immune system has developed a number of methods
for detecting and eradicating viruses and other pathogens (any disease-
producing agent including bacteria) by activating both an innate and
adaptive response. Innate responses are general responses to a lim-
ited number of pathogens and include phagocytes (scavenger cells) and

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

INTERFERENCE TECHNOLOGY 61

macrophages (either fixed to specific locations in the body or circulat-
ing with the blood) that ‘swallow’ whole pathogens or clear up debris.
Such cells are directed to pathogens through the stimulation of anti-
bodies (immunoglobulins) in response to antigens and other substances
produced by the pathogen. Also part of the innate response are the nat-
ural killer cells that destroy cells in the body that have been infected
to prevent the infection from spreading. If the innate system cannot deal
with the pathogen, the adaptive system takes over. One important part of
the adaptive system consists of lymphocytes (white blood cells) binding
approximately to pathogens. This can result in B-lymphocytes (cells pro-
duced in bone marrow) producing antibodies to bring the pathogen to
the attention of macrophages and phagocytes for destruction, or cloning
themselves in large numbers with even more specialized binding mech-
anisms so that they can inactivate the pathogens directly. Approximate
binding and cloning by B-cells provides us with the ability to identify
and deal with any new pathogen. However, since approximate binding
and cloning can lead to the production of B-lymphocytes that inadver-
tently attach themselves to healthy self-cells (cells that are part of the
body and not foreign to the body), the immune system requires helper
T-cells (cells produced in the thymus) to co-stimulate B-cells only if the
B-cell is not attached to a healthy (non-antigen presenting) self-cell. This
is particularly important in the case of viruses that have infected self-
cells. Such infected cells produce fragments of the virus on their surface
through the use of major histocompatability (MHC) molecules. If helper
T-cells recognize these viral fragments on the surface of self-cells, it pro-
duces a co-stimulus to the B-cell which then destroys the infected cell.
One of the critical properties of HIV is that it attacks these helper T-cells
(Figure 2.10). If these immune system cells become infected, they can
no longer provide the co-stimulation required for B-cells to work. The
immune system then becomes sufficiently weakened (Acquired Immun-
odeficiency Syndrome – AIDS) that any pathogen that would normally
be non-dangerous to us becomes lethal. With this basic understanding of
viral and immune system behaviour, gene silencing can be described in
more detail.

Post-transcriptional gene silencing in multicellular organisms is con-
sidered to be an evolutionary conserved, single cell defence mechanism
for dealing with foreign genes and RNA introduced typically by a virus.
That is, before multicellular organisms – with their complex immune
systems requiring the cooperation of many different types of cell – devel-
oped from single-cell organisms, such single-cell organisms had to fight

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

62 INTRODUCTION TO PROBLEMS AND CHALLENGES

pathogens on their own and without the help of other cells. Both positive-
sense and negative-sense RNA are produced by different types of virus,
and the cell had to find a mechanism to prevent their expression. Also,
double-stranded RNA can be produced by viruses using reverse tran-
scriptase. Since all three types of sequence were found to silence genes
in multicellular organisms, the current hypothesis is that the underly-
ing gene silencing mechanisms reflect the manner in which single cells
prevented infection.

The current model of interference is that an enzyme called Dicer (Fig-
ure 2.11(a)) takes the introduced double-stranded RNA and cuts it into
small (20–25 bp) sequences called small interfering RNA (siRNA) (Fig-
ure 2.11 (b)), which in turn – after separating into single strands – bind
to an RNA-inducing silencing complex (RISC) (Figure 2.11(c)).These

(a)

dsRNA

Dicer

(b)
siRNA

(c) RISC

(d) Activated
RISC

(e) Target mRNA

(f)
Cut RISC prevents

translation
at ribosome

Figure 2.11 Interference technology

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

SUMMARY OF CHAPTER 63

become activated when the siRNA unfolds (Figure 2.11(d)) and the acti-
vated RISCs then target mRNA transcripts through complementary base
pairing (Figure 2.11(e)). If transcripts containing the appropriate com-
plementary sequences are found, they are cut or the RISC binds to the
transcript to prevent translation of the transcript at the ribosome (Figure
2.11(f)). In some organisms a ‘spreading’ effect has been found, whereby
the cut mRNA is copied to form secondary siRNA for use in RISCs. This
copy process is used to explain why introducing a sense RNA strand can
also lead to gene silencing. However, for effective gene silencing, dsRNA
is rarely used, since such strands can trigger an anti-viral response from
the immune system leading to the cell’s death. Instead, siRNA is cur-
rently used to silence genes. Such siRNA can be produced synthetically
and injected into cells, or they can be transported into the cell with the
help of viral ‘vectors’ (safe viruses that have been genetically engineered
to contain a DNA sequence which, when inserted into a cell and tran-
scribed, produce the siRNA). Current research points to whole genome
functional analysis being possible in the near future, where all genes are
individually screened by siRNA and the resulting transcriptomes and
proteomes measured to identify the effects. It is currently unclear as to
exactly what sort of bioinformatics resource will be needed to support
systematic functional analysis of genomes. Also, current research into
RNA interference (RNAi) technology is directed towards fighting viral
diseases (the production of siRNA that prevents viral mRNA from being
translated) and silencing cancer-associated genes (e.g. siRNA to silence
cell division). Many of these problems are so complex that standard
modelling and simulation tools may not be adequate. Novel methods
and techniques may have to be developed to take bioinformatics into the
next generation.

2.6 Summary of chapter

1 The major problems in bioinformatics can be distinguished according
to the areas into which these problems fall: genomics, transcriptomics
and proteomics.

2 Current problems in the post-genomic era deal with sequence analysis
and phylogenetic analysis to make clear the relationships between
organisms as the number of fully sequences genomes grows. However,
there are problems in being able to compare organisms in such a way
that clear and unambiguous phylogenetic relationships emerge.

JWBK023-02 JWBK023-Keedwell March 28, 2005 12:56 Char Count= 0

64 INTRODUCTION TO PROBLEMS AND CHALLENGES

3 Transcriptomics is a relatively new problem area arising from recent
technological advances in DNA arrays (microarrays and gene chips).
The major problems here, apart from obtaining the data, is the anal-
ysis of the data given the large number of genes measured for a com-
paratively small number of samples. Novel techniques may need to
be developed to reverse engineer gene networks from temporal data
so that the interrelationships between genes are clearly identified.

4 Protein folding prediction is one of the oldest known problems in
proteomics and hence bioinformatics. Problems exist in sequencing
a protein without affecting its nature, and techniques for predicting
the structure of proteins from their linear sequence need improving.

5 A new problem area concerns interference technology and the way
that genes can be silenced to measure their effect. Of great interest is
the application of interference technology to immune systems, since
it is by observing the effect of switching off genes and interfering
with genes of the immune system that a greater understanding will be
obtained of how the body fights infections, thereby leading to future
drugs that can be more carefully targeted for particular viruses.

6 Finally, embryonic stem cell research provides a novel way to un-
derstand cell differentiation for possible future cures of diseases
currently believed to be untreatable. There are, however, ethical con-
siderations with regard to embryonic stem cell research that will need
discussion before approval can be given to such research.

2.7 Further reading

Baldi, P. and Hatfield, G.W. (2002) DNA Microarrays and Gene Expression, Cam-
bridge University Press.

Coico, R., Sunshine, G. and Benjamini, E. (2003) Immunology: A Short Course, 5th
edn, Wiley–Liss.

Mount, D.W. (2001) Bioinformatics: Sequence and Genome Analysis, Cold Spring
Harbor Laboratory Press.

Parson, A.B. (2004) The Proteus Effect: Stem Cells and Their Promise, National
Academies Press.

Ridley, M. (2003) Evolution, 3rd edn, Blackwell.
Sternberg, M.J.E. (ed) (1996) Protein Structure Prediction, IRL Press.

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

3
Introduction to Artificial
Intelligence and Computer
Science

3.1 Introduction to search

One of the most fundamental tasks in computer science is search. Many
problems can be converted into search problems, including the simple
problem of adding two numbers, such as 2 + 2. The search represen-
tation of this problem is whether there exists a number (in this case, 4)
that can be reached from the original statement of the problem. To de-
termine an alignment between two DNA sequences can also be regarded
as a search problem: given the starting point of two sequences, find a
solution that minimizes as much as possible the differences between the
two sequences. The development of search techniques received a major
boost with the formalization of graph theory, with graphs being defined
formally and precisely in terms of nodes and arcs that connect them. A
labelled graph has one or more descriptors called labels on each node
that distinguish that node from all other nodes in the graph. In a state
space search these labels identify states during a problem-solving process.
Also, the arcs (connections between nodes) can be labelled to represent
some relationship between nodes. Usually these labels represent weights,
or costs involved in moving between one state and another. A graph is
directed if the arcs have arrows, signifying directionality.

In a state space representation of a computational problem, the nodes
of the graph represent partial solutions to the problem and the arcs

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd

65

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

66 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

represent steps in the problem-solving process. One of the nodes is
uniquely distinguished as the start or initial state, and there may be one
or more nodes that represent the goal state or states. The task of a search
algorithm is to find a solution path through the problem space, keeping
track of the steps followed and states visited. Representing problems in
computer science and bioinformatics as search problems allows the full
weight of graph-theoretic concepts to be applied to the problem and also
allows comparison between different solutions to the problem as well as
comparisons between solutions to different problems.

3.2 Search algorithms

Consider the graph in Figure 3.1. Formally, a graph is collection of nodes
(vertices) and links (arcs) connecting the nodes. In the example below the
arcs are labelled, meaning that there is some cost to the link between two
nodes. Usually these costs are distances when the graph represents a map,
although such labels can also represent constraints to be satisfied before
the link can be followed. For the moment we shall concentrate on graphs
that represent maps, where if there is a label on an arc then it represents
the distance between the two nodes it connects. If there is no label on an
arc, the link shows that a path exists between the two nodes. The task
in Figure 3.1 is to find the shortest route, in terms of distance and not
cities visited, between S (the start city) and G (the goal city). There are
eight ‘cities’ S, A, B, . . . , G, but note that not all the cities are connected
to each other. The distance between two nodes X and Y is the same as
the distance between Y and X.

One possible solution route is S to A to D to G (SADG), giving a total
distance of 18. Then SCDG may be noticed, with total distance 16, which

A D

C

E

G

FB

S

7

9

1

1
2

18

7 2

2

2

2

6

8

8
8

Figure 3.1 A graph representing a map

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

SEARCH ALGORITHMS 67

is shorter. After trying a number of possibilities, the route SBACEFDG
may be arrived at, which gives a total distance of 12 even though all cities
have been visited. To verify that this is indeed the shortest route, other
routes have to be tried, but now there is a ‘benchmark’ of 12 which can
be used to stop further examination of particular routes if the distance
is 12 or more and G has not been reached.

The solution to this task is reached quickly, but now imagine that there
is a real-life labelled map containing 100 or more cities and distances,
with many different ways of getting from one city to another. A route
may be found that appears the shortest, but how do we know for sure
that it is the shortest? How long will it take to calculate the shortest route
in such large-scale maps?

These may seem like hard questions to answer, so it may be decided
to write programs to solve these problems. The first problem faced is
how to represent the graph in Figure 3.1 to a computer. Fortunately,
there is an easy way to represent graphs to computers which involves
the matrix method (Table 3.1). Since matrices are provided as standard
in most programming languages, there is an easy way to represent the
connectivity of the graph in Figure 3.1. Providing the information to a
computer in a way that the computer understands is to provide a data
structure to the computer. Another advantage to the matrix method is
that, if another node is added to the graph (another city is added to the
map), it will be easy to add an extra row and column to the data structure
and insert the distances between that node and all the nodes it connects
to in the appropriate x,y entries, without needing to enter all the graph
information again. Once such a data structure is developed, an algorithm
is required that will make use of this data structure to calculate shortest
routes.

An algorithm is a sequence of steps that, if systematically and correctly
executed, will produce the desired result. For searching graphs there is a
need to devise an algorithm that will explore paths rigorously, meaning
that the solution is to be found as efficiently as possible as well as guar-
anteeing to return the correct result. To ensure that there is an efficient
algorithm that doesn’t explore a route that has been previously examined
and found not to contain the desired solution, as well as exploring all
possible routes that exist in the graph, a search algorithm is required that
methodically searches routes one step at a time. The conventional way
to do this is to convert the type of search into a tree search.

Look again at S, the start node (Figure 3.1). There are three links from
S to A, B and C. Rather than decide arbitrarily to follow just one, all

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

68 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Table 3.1 A matrix representation of the graph in Figure 3.1. Each city is numbered
(S = 1, A = 2, etc). The rows of this distance or cost matrix describe the distance/cost
between a start node and an end node, and the columns the distance/cost between
an end node and a start node. For instance, row 1, column 4, contains the value
6. This entry states that there is distance 6 between S and C. Any distance can be
accessed by giving (x,y) coordinates. For instance, (5,8) returns the value 2, which
gives the distance between D and G. ‘Ø’ indicates that the two specified nodes are not
connected. Note also that a node cannot be connected to itself (hence the Øs along
the leading diagonal (1,1), (2,2) etc. of the matrix). Finally, note that the matrix
is symmetrical. That is, the entries above the leading diagonal are the same as the
entries below the leading diagonal, in mirror form. This reflects the property of the
graph that the cost of getting from x to y is the same as the cost of getting from y to
x. There may be graphs where this symmetry is not preserved (e.g. one-way streets
between nodes which are shorter in one direction than the other)

S A B C D E F G
1 2 3 4 5 6 7 8

S Ø 7 2 6 Ø Ø Ø Ø
1
A 7 Ø 2 1 9 Ø Ø Ø
2
B 2 2 Ø 18 Ø 7 Ø Ø
3
C 6 1 18 Ø 8 1 8 Ø
4
D Ø 9 Ø 8 Ø Ø 2 2
5
E Ø Ø 7 1 Ø Ø 2 Ø
6
F Ø Ø Ø 8 2 2 Ø 8
7
G Ø Ø Ø Ø 2 Ø 8 Ø
8

three are followed. This is represented in Figure 3.2(a). The start node is
called the root of the tree and is at the top level. At the next level below
are all the nodes (A, B, C) that can be reached from the start node. The
tree at this stage is one level deep, and the tree at this point represents the
routes SA, SB and SC. The nodes A, B and C are child nodes of S, and S
is the parent node of A, B and C, which are sibling nodes to each other.
Describing at a level below all the child nodes that can be reached from
a parent node at the level above is called expanding the parent node. At
the next level of the tree all the nodes that can be reached from A, B and
C are then described (Figure 3.2(b)). A and B have three children nodes
each, whereas C has five. The tree is now two levels deep and represents

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

SEARCH ALGORITHMS 69

1 2 3

S

B CA

(a)
S

B CA

BB

4 5 6 7 8 9 10 11 12 13 14

D DC C E E FAA

(b)

15 16 17 18 19 20 21 22 23

S

B CA

BB D DC C E E FAA

B CD FC E E G F D... E G

(c)

No further expansion since
goal node has been reached

Figure 3.2 Ordered expansion of a search into a tree search

all the nodes that can be reached from S in two steps. For instance,
the left-most path in Figure 3.2(b) describes the route SAB, whereas the
right-most path the route SCF. It is ssumed that, when generating child
nodes, there is no need to go back to the node which is its parent. The
distance travelled each time the search is extended by a level can also
be calculated, but another possibility is to generate all possible routes
first without wasting time looking up distances in the matrix and then
calculate the total distances of all paths at the end.

The next step in the expansion is given in Figure 3.2(c). Only a partial
expansion of all nodes at the third level are described, but already it can
be seen how complex the search tree is becoming. The search is continued
until all paths reach G (all routes are complete), or it is not possible to
expand a node without revisiting a node already visited earlier on the
same path from the route node. Once the search stops, the distances for
all paths can be calculated to identify the route with least cost (Figure 3.3).

To determine the number of paths that have been explored, they can
be simply counted, as in the simple examples above. More generally,
however, if a node has b child nodes, it is said to have a branching

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

70 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

S

12

21

15

B CA

BB D DC C E E FAA

G... ...

D... ...

FC G

......

E F...

D EF G...

B DD CC E

Figure 3.3 A fragment of the full breadth-first search tree is shown here (with dots
in circles indicating that there are more sibling as well as child nodes
that are not represented in the figure)

factor of b. If all paths are complete at the same level d of a tree and
all nodes have b child nodes, then bd will have been explored paths. For
instance, if a tree had a branching factor of four (four child nodes from
each expanded node) and all paths complete at level six, there will be
46 complete paths, i.e. 4096 complete paths. That is, at the first level
there would be four child nodes to explore from the root node, i.e. 41

paths. At the next level, each of these four nodes would have had four
child nodes themselves, giving 42 (i.e. 16) paths, and so on. The number
of paths is pruned by preventing expansion of nodes to child nodes that
had already been visited on the path, and for the example the number of
child nodes for a parent was not fixed. If on average there are three child
nodes from each expanded node, taking the pruning of redundant nodes
into account, and the average depth of a complete path is six, even for the
simple example above there would have been approximately 36 paths, i.e.
729 paths, to explore. However, imagine if there were a graph of 50 cities
(for instance, a map of Great Britain), and each city could be connected to
10 other cities, and the average complete path depth was 25. That would
give approximately 1025 paths, i.e. 10 000 000 000 000 000 000 000 000

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

SEARCH ALGORITHMS 71

(1 followed by 25 zeros) paths. Even if one billion paths per second
could be processed on a truly fast computer, this would still take over
7.5 billion years to calculate. Generating all possible routes is clearly
not feasible. Something a bit more intelligent is clearly needed, or the
constraint needs to be loosened that the absolutely correct answer to the
problem is required.

Breadth-first search

The technique for generating a search tree from a graph, as given in Fig-
ure 3.2, is breadth-first. Nodes are expanded in the order in which they
are generated. For instance, in Figure 3.2, S is expanded into A, B and C,
which are generated in the order 1, 2 and 3 (Figure 3.2(a)). Since A was
first generated in the expansion of S, it is expanded first to B, C and D,
which has generation order 4, 5 and 6; but before expanding any of these
nodes, breadth-first searching goes back to node 2 (B) and expands that
next to A, C and E (generation order 7, 8 and 9) and then goes back to
node 3 and expands that to A, B, D, E and F (generation order 10, 11, 12,
13, 14). Nodes 1, 2 and 3 have therefore been expanded. Since node 4 (B)
now comes first in terms of unexpanded nodes, it is expanded next, fol-
lowed by node 5, etc.. If the task had been to find the route which visited
fewest cities to get to G irrespective of distance, a breadth-first approach
would have found the routes SADG, SCDG and SCFG at the third level
(Figure 3.2(b)), and the search could have stopped at that point.

Depth-first search

The problem with a breadth-first search is in keeping a large number of
routes in memory so that nodes can be expanded in the order generated,
until all routes reach the destination node. Another technique for search-
ing is depth-first, where the search tree is formed using the most recently
generated node for further expansion (Figure 3.4).

Depth-first searching is advantageous when a solution is needed with-
out caring about the number of nodes visited or the distance travelled.
For instance, if only a route from S to G were required, it would have
been found at node 13 (Figure 3.4) (in comparison with finding the short-
est distance route at level 7 in Figure 3.3). Depth-first searches can also
use less memory for storing paths. Each path can be explored until it
reaches the goal node G, for instance, its distance calculated, and then

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

72 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

A

S
(b)(a)

1

1

2

3 4 6 7 8 9 11 12 13

15

14

10

5

S

BA

B DC A

B CD FC E E F G

......

Figure 3.4 Depth-first search and expansion order

the path can be pruned with a record made of the distance for that route.
However, depth-first searches must be supported by other checks that
ensure that loops are not formed. For instance, if a large depth bound is
set for the example graph in Figure 3.1, depth-first searching may loop
around the path SABSABSAB. . .

3.3 Heuristic search methods

Depth-first and breadth-first searches are examples of ‘blind’ search tech-
niques that systematically evaluate every path in the search space. How-
ever, when we humans search for a route from S to G in the map repre-
sented in Figure 3.1, we make choices of which paths to follow from a
particular node depending on how much closer it gets to G. For instance,
if we get to C from A, there does not seem much point in exploring the
path to B because, in some sense, it takes the search backwards and not
forwards in the search. Blind techniques, however, will explore the C to
B path equally with others and may even explore this path ahead of the C
to D or C to F if the algorithm requires nodes to be expanded, depth-first
or breadth-first, in alphabetic order (as in Figures 3.2, 3.3 and 3.4, where
child nodes are in alphabetic order). Once the algorithm is given some
extra domain-specific information to help its search strategy, heuristics
have been introduced.

A heuristic is any way that the algorithm can be directed towards
solving the problem through the use of domain-specific information. That
does not mean that the heuristic will always help solve the problem, but
it may help the algorithm solve the problem more quickly than a blind
approach. The main purpose is to reduce the search space by reducing

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

HEURISTIC SEARCH METHODS 73

the need to explore irrelevant or unlikely paths. A heuristic is therefore
independent of an algorithm and can be described independently of that
algorithm. For instance, a useful heuristic for the search of the graph in
Figure 3.1 may be: ‘When exploring paths, choose a path which takes
the search closer to the goal.’ The task then is to formalize this heuristic
in a manner that is useful to the algorithm.

One way to formalize this heuristic is to give the algorithm some extra
information in the form of an estimate of the distance remaining from a
particular node to the goal node. This estimate is provided by the user
and can be added to the data structure for the problem. For instance,
as noted before, the matrix in Table 3.1 is semi-redundant in that, given
that each path is bi-directional, the distance between node x and node
y is the same as the distance between y and x. Also, since G is the goal,
the last row of the matrix is redundant, since there is no need to leave G
(generate paths beyond G). This last row can be replaced with a set of
estimates concerning the distance remaining between all the other nodes
and G (Table 3.2).

Table 3.2 The data structure for the graph in Figure 3.1, supplemented with esti-
mates of the distance remaining in the final row. For instance, the second column
value in the final row indicates that the estimated distance remaining between A and
G is 20. These values can be estimated by, for instance, using information about the
scale of the map represented by the graph in Figure 3.1. It is not important that these
estimates are totally accurate

S A B C D E F G
1 2 3 4 5 6 7 8

S Ø 7 2 6 Ø Ø Ø Ø
1
A 7 Ø 2 1 9 Ø Ø Ø
2
B 2 2 Ø 18 Ø 7 Ø Ø
3
C 6 1 18 Ø 8 1 8 Ø
4
D Ø 9 Ø 8 Ø Ø 2 2
5
E Ø Ø 7 1 Ø Ø 2 Ø
6
F Ø Ø Ø 8 2 2 Ø 8
7
G 30 20 25 15 5 18 5 Ø
8

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

74 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Hill-climbing

When considering search problems such as this, the total number of
solutions and their cost can be thought of as a landscape, with peaks and
troughs representing collections of good and bad solutions. Most search
problems have graduated peaks, which means that if the algorithm is at
the bottom of a hill, then there is a set of steps to get to the top of that
hill (see Figure 3.12 later in this chapter).

Simple hill-climbing, so called because of its drive towards better per-
forming solutions, is a heuristically-informed search algorithm that ex-
pands a child node only if it is better than its parent node (Figure 3.5).
Imagine the search starts with S and the task is to find a route to G. S is
estimated to be 30 units of distance away from G (Table 3.2). The first
child of S the algorithm explores is A. A is estimated to be 20 units of
distance away from G. Since it is ‘closer’ to G than S, this node is selected.
When A is reached, B (the first child, using alphabetic ordering) is exam-
ined. B is 25 units of distance away from G, which is further away than
the estimated distance for A. So B is ignored for the moment. C, however,
is estimated to be 15 units of distance away from G, which is a closer
estimate than the 20 currently for A, so that path is followed. When C is
reached, the path to B can be ignored since it appears to take the search
further away from G according to the estimated distance remaining, but
D appears to take the search closer (5 units of estimated distance remain-
ing), so that path is taken. When D is reached, since going to A takes the
search to a node already visited on the path, it is ignored. F is the same

S

A

CB25 15

20

30

5 0

5 D

GF

Not explored, since this
node does not take us
closer to G than its parent

Actual cost of reaching G = 18

Figure 3.5 Simple hill-climbing

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

HEURISTIC SEARCH METHODS 75

S30

20 25 15

20

20

5

0

5
1825 5

B CA

B D E FA

A F G

Actual cost = 16

Figure 3.6 Steepest-ascent hill-climbing with estimates of distance remaining

estimated distance away from G as D, so that can be ignored also. Then
G is found, which is the goal node, so that path is taken.

However, the search is not over. One route to G with cost 18 has been
found. The task is to find the shortest distance route, and other routes
must be explored, especially those rejected earlier in the search due to
estimated distances remaining that were larger than the parent node.
However, at least there is now one path with an actual cost that can help
guide the remainder of the search.

Steepest-ascent hill-climbing is a variation of hill-climbing that selects
the best possible move at each point and requires all child nodes of a
parent to be generated first before a decision is taken as to which child
node to expand further (Figure 3.6). Again, even after the route SCDG
is found, the search will need to explore the tree further to see if there
are routes of shorter distance than 16.

Both depth-first and breadth-first searches expand only one node at a
time. An extension to this is beam search, where two or more nodes are
expanded in parallel with the other paths being kept in the background
for subsequent checking, if required. The number of nodes explored in
parallel is given by a beam width. An example of a heuristic beam search
is given in Figure 3.7.

The search is started with S and its three child nodes. From the esti-
mated distances remaining, two nodes A and C are chosen for further
expansion at the next level. A has three child nodes and C has five.
Three nodes all have estimated distance five remaining. Since two of
these nodes are the same (D), one is chosen arbitrarily to expand further
with F. At the third level, G is found twice, with different actual dis-
tances for the two different routes. Again, the beam search must return

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

76 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

S

B CA

BB D DC E FA

0515

2015

5

25

20

30

25

15

25 5 18

C F G

0185

ED G

Distance = 18 Distance = 22

Figure 3.7 An example of a beam search with beam width two (that is, two nodes
are expanded at each level)

to nodes not fully expanded to expand these further to see if a shorter
route exists.

3.4 Optimal search strategies

While heuristic search methods using estimates of the distance remaining
guide blind search techniques, it is clear that none of these techniques
will find the route with the actual least distance SBACEFDG very easily,
although such techniques can be useful for finding routes of shorter dis-
tance than previously known. For instance, if SCFG (distance 22) was
previously used as a route, then finding SADG, while not the shortest
route, leads to a better route than previously used. For certain applica-
tions it may be sufficient to find routes that are better than currently
used ones, and heuristic search methods work well in these situations.
However, if it is critically important to find the best or shortest route,
optimal search procedures must be used. Optimal search procedures are
distinguished from heuristic search methods by using the actual cost of
the partial routes so far found in the search tree as a guide to which node
to expand next. For instance, returning to the example in Figure 3.1,
when S is expanded to A, C and B and there are three child nodes to
expand next, an optimal search strategy would choose to expand B next
because the actual cost of S to B, which is 2, is less than the actual cost
of S to A (actual cost 7) and S to C (actual cost 6). After expanding B to
A, C and E, the actual cost of S to B to A is 4, S to B to C is 20, and S to
B to E is 9. Since S to B to A has least actual cost, it is chosen next. At
some point, a route that is continually expanded will exceed the actual

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

OPTIMAL SEARCH STRATEGIES 77

cost of another route elsewhere in the search tree, at which point a jump
is made to whichever partial route has least actual cost so far.

Branch-and-bound and A*

This process of expanding (branching) nodes and then jumping to which
ever route has least actual cost (binding to that route) is called branch-
and-bound (or best-first) search. An example of branch-and-bound work-
ing on the example graph is given in Figures 3.8 and 3.9.

B FD B

S

B CA

C EA

E FD

F

DC

7

4

20

13

13 13

5

6

8

9

2
6

[2]

[3]

[4]

[1]

(a)

C

B D E FA

S

BA

C EA

E FD

F

DC

7

4

20

13 16 9 14 9

13 13

5

6

8

9 14 127 724

2 6

[6]

[5]

[7]

(b)

B FD B

C

B D E FA

S

BA

C EA

E FD

F

DCE FDB

7

4 20

13 16 9 14 9

13

26 15 9 16

13

6

6

8

9

C DB9
8

16 14 127 724

2 6

[8]

[9]

(c)

Figure 3.8 An example of branch-and-bound on the graph in Figure 3.1

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

78 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

S

B CA

BB D DC C E E FA

D E F C DBEC

A

F

GD

G

E FDFB

BD...... FB

............

7

8

9

27 16 26

16

12

10 16

11 13

8

136

13516 169

16

4 20

9

7 724

16 9 14

9

14 12

2 6

[2]

[3]

[4]

[1]

[7]

[5]

[6]

Figure 3.9 Conclusion of the branch-and-bound search

Actual costs of reaching a particular node on a route are given next to
the node. The numbers in the diagram in square brackets refer to the order
of the branch-and-bound search. In Figure 3.8(a), when S is expanded to
A, B and C, the actual costs are used to determine which node to expand
next, and since SB has lowest actual cost of 2, it is expanded first [1].
Since SBA has the lowest cost of 4 anywhere in the search tree, it is
expanded next [2]. Since SBAC has the lowest cost of 5 anywhere in
the tree, it is expanded further [3]. Since SBACE has joint lowest cost
(with SC) of 6, and assuming it is chosen for expansion [4], the path
SBACEF results (assuming that nodes already visited on the route are
not revisited). At this point, SC has the lowest cost (Figure 3.8(b)), and
the search now binds to SC [5]. After expansion of SC, SCA and SCE
both have joint cost of 7, which is also the lowest anywhere in the search
tree. After SCA [6] and SCE [7] are expanded, (c) SA has the lowest

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

OPTIMAL SEARCH STRATEGIES 79

actual cost, so the search is now bound to that path (Figure 3.8(c)). SA is
expanded to SAB, SAC and SAD [8], and SAC has the joint lowest cost
with SBACEF. Assuming that SAC is expanded further [9], the lowest
cost path anywhere in the tree is SBACEF (middle of tree).

The conclusion of the search is given in Figure 3.9. After SAC has been
expanded (Figure 3.8(c)), the lowest actual cost partial route is SBACEF
(with cost 8). This is expanded to D and G [1], and although G has
been found with actual cost 15, the search must continue since there are
many ‘open’ nodes that could still reach G with less cost. Since SAB now
has the lowest route cost of 9 [2], this is expanded, as a result of which
SACE [3] is expanded. This results in SBE having the lowest cost with 9,
and so the search is bound there [4]. Assuming that the children nodes
of SBE result in routes with a higher cost than 9, branching continues
with SCAB [5], which has the lowest cost anywhere in the tree. Again
assuming that the child nodes have greater cost, the search is then bound
to SCEF [6], which also has cost 9. Finally, assuming that the child nodes
of SCEF result in costs higher than 10 at some point, the search is bound
back to SBACEFD [7], and the graph’s true lowest cost path of 12 units
of distance is found. However, all open nodes elsewhere in the tree on
paths that have not yet resulted in a distance greater than 12 must be
explored further until they reach G with less actual cost than 12, or their
routes are greater than 12 and G has not been reached, at which point
the search is terminated with SBACEFD returned as the real lowest-cost
route.

While branch-and-bound is guaranteed to find the shortest (lowest-
cost) route once all open nodes are explored to the point where there
can be no more lowest-cost routes, there is still some efficiency to be
gained by not keeping paths that reach a node with greater cost than
another path in the search. For instance, in Figure 3.9 there is a path
down the left side of the search tree that reaches C with cost 27 (SABC).
Yet C is reached with one move from S with cost 6 at the first level
(SC) of the search tree (on the right of the figure). There is no need to
keep the higher cost path SABC since C is already reached with lower
cost. SABC can therefore be pruned in Figure 3.9. Applying a similar
line of reasoning, SAC (cost 8) and SBC (cost 20) should have been
pruned, leaving the search with fewer paths to explore. An efficiency
principle here is that if two or more paths reach a common node then
only the path that reaches the common node with minimum cost should
be kept and the rest deleted. Also, just as hill-climbing benefited from the
inclusion of heuristic information as to whether the search was heading

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

80 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

in the right direction, some distance-remaining estimates can be used
to guide the search. The result is the A∗ algorithm, which is a branch-
and-bound search supplemented by the deletion of redundant paths and
the use of estimates of distance remaining. Figures 3.10 and 3.11 show
how the graph in Figure 3.1 would be searched by A∗, using the distance
remaining estimates contained in Table 3.2.

After expanding S (Figure 3.10(a)) each node is given an ‘x/y’ pair of
values, where ‘x’ is the estimated distance remaining plus actual cost, and
‘y’ is the actual cost only. The node with the least ‘x’ value is expanded
first [1]. This results in five child nodes [2]. Since there is an alternative
path to A with less or equal cost elsewhere in the search tree (SA has cost
7; SCA also has cost 7), one is pruned (in this case SCA). Similarly, SCB
can also be pruned since there is a path with less cost to B elsewhere in the
search tree (SB). There are two least ‘x’ values of 19 (SCD and SCF), and
imagine that SCD is expanded first (Figure 3.10(b)) through some form
of random tie-break [3]. Two child nodes can be pruned, since there are
less actual cost paths to these nodes elsewhere (SCDA (actual cost 23)
can be pruned because of SA (actual cost 7), and SCDF (16) because of
SCF (14). Also, the first route to G with actual cost 16 is found (SCDG),
which acts as a benchmark or threshold for the subsequent search. The
search must continue (Figure 3.10(c)) since there are several open paths
still left to explore. SCF is expanded because its ‘x’ value is lowest of
anywhere in the search tree. All three child nodes can be pruned [4] since
there are less actual distance paths to these nodes elsewhere. Since all
child nodes of F have been checked, it too can be pruned. Since SCE
has the lowest ‘x’ value, it is expanded (Figure 3.10(d)). The path to B
can be pruned [5], F is expanded (least cost ‘x’ value), the route to G is
pruned since there is an actual less-cost path elsewhere to G [6], and D
is expanded because of its ‘x’ value of 15. The path to A is pruned [7],
and a new, actual lower-cost route to G is found (actual cost 13). The
previous best route to G (SCDG) can now be pruned [8].

The second and final part of the search is provided in Figure 3.11. The
lowest ‘x’ value for an open node is SA (assuming a random tie-break
with SB, Figure 3.11(a)). All three child nodes can be reached with less
actual cost elsewhere in the search tree, and so A and its child nodes can be
pruned [9]. SB is expanded (Figure 3.11(b)) with two child nodes pruned
[10]. SBA is expanded and one of its child nodes is pruned [11]. SBAC
is kept because it reaches C with less actual cost (5) than SC (6) . SBAC
is expanded, and two child nodes are pruned [12]. SBACE is expanded
[13] and F kept since this is the least actual cost way of reaching F. One
of its two child nodes is deleted [14], since there is an actual less-cost

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

OPTIMAL SEARCH STRATEGIES 81

S

27⁄7

27⁄7 49⁄24 19⁄14 25⁄7 19⁄14

27⁄2
21⁄6B CA

B D E FA

[1]

[2]

(a)
S

27⁄ 7

19⁄14

43⁄ 23 21⁄ 16 16 ⁄ 16

25⁄ 7 19⁄14

27⁄ 2

21 ⁄6B CA

E FD

F GA[3]

(b)

First path to G found,
with cost 16

S

27⁄ 7

25⁄ 7

19⁄ 14

27⁄ 2

21 ⁄5B CA

D E F

34⁄16 21⁄ 16 22 ⁄ 22

E D G

[4]

(c)

16⁄16

G

S

27⁄ 7

25⁄ 7

27⁄ 2

21 ⁄6B CA

D E

39⁄14

14 ⁄ 9B F[8]

[5]

[6]

[7]

(d)

16 ⁄11

17⁄ 17

D G

40⁄20 13⁄13

A G

16 ⁄16

G

New path to G found,
with cost 13

Figure 3.10 The first half of A∗ searching the example graph

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

82 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

B C D

S

B C

E

F

D

G

A27/7

34/9 23/8 21/16

27/2

21/6

25/7

14/9

16/11

13/13

(a)

[9]

G

D F

D

C E

G
[14]

[15]

[13]

[12]

[11]

[10]

[16]

S

B C

E

F

D

27/2

(b)

A24/4

24/6 18/13

18/13

35/20 27/9

13/8

16/10

16/16

12/12

C

E

F

D

G

20/5

18/13

21/6

25/7

14/9

16/11

13/13

New route found with
less cost

Figure 3.11 The final part of A* search

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

PROBLEMS WITH SEARCH TECHNIQUES 83

way of reaching G, and finally G is found [15]. Since SBACEGDG is less
actual cost than the previously found route to G (SCEFDG), the latter
is pruned [16]. Since there are no more open nodes to examine, A* has
found the shortest (least actual cost) route from S to G.

3.5 Problems with search techniques

There are three major problems with any search technique that uses some
distance remaining metric: foothills, plateaux and ridges. Foothills are
local maxima that deflect the search to areas that initially look promis-
ing but on further investigation turn out not to lead to the goal (Fig-
ure 3.12(a)). All moves from the top of the search hill look worse than
an earlier position. Apart from wasting time and resource, there is the
problem of how to redirect the search in the most appropriate direction.
Plateaux occur when the distance remaining values for child nodes are

A S B C

D

G

S

B

C

G

D
E

E

S

S

H

A

A

B

B

C

C

G

G

F E

E

D

D

Desired direction
of search

Foothill (local maxima)

S

G

A
B C D E

F

Desired direction
of search

Plateau

S

G

A B C D

Desired direction
of search

Actual direction
of search

Ridge

(c)

(b)

(a)

Figure 3.12 Problems with search techniques using the distance remaining; S is the
start node and G the goal node

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

84 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

identical or nearly identical (Figure 3.12(b)). No obvious route can be
found to the goal. Ridges occur when the search appears to be heading
in the right direction, but the further one goes the more distant the goal
actually becomes (Figure 3.12(c)). Some methods for dealing with these
problems are: to backtrack (i.e. systematically work back through the
route to identify the point where the problem started and resume search
by expanding an alternative node), to jump randomly anywhere in the
search tree and to explore an expansion several moves ahead to see if
that route looks promising before committing the search to it.

3.6 Complexity of search

The example graph contained in Figure 3.1 is deliberately designed to
show how complex a search can be without heuristic knowledge. A total
of 34 paths were examined in Figure 3.10 and Figure 3.11 before the
optimal path was found. Given an average branching factor b of three
and an average depth of route d to G of five, the figure of 34 is to be
compared with a figure of bd = 35 = 243 paths that might have had to
be explored exhaustively if A∗ had not been used or information gathered
earlier in the search to guide subsequent search. Nevertheless, the graph
might be such that it is necessary to explore all possible paths before
finding the shortest route. The time complexity of A∗, in the worst case,
is O(bd), where ‘O’ stands for ‘of the order of ’. This notation helps to
identify the amount of time A∗ might actually take to identify the shortest
route in the worst case. If 100 paths can be explored every second, then
O(bd) for the graph in Figure 3.1, given b = 3 and d = 5, is 2.43 s. If the
branching factor had been greater, say, b = 4 or b = 5, then the amount
of time would be 10.24 s (45 = 1024 paths) and 31.25 s (55 = 3125
paths), respectively. If, however, the branching factor remains constant
and the depth of the tree increases to d = 6 or d = 7 (that is, the best
route is on average 6 or 7 levels down the search tree), then A∗ would
take, in the worst case, 7.29 s (36 = 729 paths) and 21.87 s (37 = 2187
paths). The O notation here helps estimate how long a search will take
in the worst possible case.

It may be asked what the ‘worst possible case’ means here. Consider
a depth-first search, with the search tree expanding the most recently
generated nodes first (Figure 3.4), where the desired shortest path is on
the extreme right-hand side of the search tree. A depth-first search would
then need to generate every possible route to find the best route, and this
is the worst possible case. A depth-first search is therefore also O(bd)

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

COMPLEXITY OF SEARCH 85

(assuming some form of backtracking so that nodes generated earlier
in the search tree are revisited to be expanded later in the search tree).
Sometimes the shortest route might be on the very left of the tree, and
its structure is such that all remaining routes can be pruned immediately
without any need to expand them further. In this ‘best possible case’
the solution has been found in O(d), that is, within the time it takes to
generate a route of average length. The O notation is not meant to take
into account practical aspects of computation, such as processor speed,
but is meant to give an abstract description in terms of units of time,
however measured, of how long an algorithm will take to complete its
task, in the worst possible case.

The ‘O’ notation is also used to estimate space requirements for a
search. For instance, with A∗, in the worst case, all paths found in the
search tree may need to be stored because the shortest route is not found
until the very end of the search and no pruning of redundant paths is
possible. The space complexity of this worst-case scenario is also O(bd).
For instance, if it takes 1 byte to store a node and its path to a child, then
for A∗, with b = 3 and d = 5, 243 bytes are needed. For a search with
b = 10 and d = 10, 10 billion bytes would be needed.

It is better, from a computational complexity viewpoint, to have algo-
rithms that are of the order O(xk), where x can vary and k is a constant
number, than to have an algorithm of the order O(kx). Consider algo-
rithms of the order O(12), O(22), O(32), O(42), O(52), etc., i.e. O(xk).
The values are O(1), O(4),O(9), O(16), O(15), etc. Compare this to
algorithms of the order O(21), O(22), O(23), O(24), O(25), etc., i.e. O(kx).
The values here are O(2), O(4), O(8), O(16), O(32), etc. In the latter
case, there is an exponential increase in the complexity (the exponent of
kx increases), whereas in the former there is a polynomial increase (the
polynomial of xk increases).

With regard to an O(bd) search, it is better to have the branching factor
b increase than the depth d of the tree increase. For instance, consider an
algorithm of O(702), that is, each node has 70 connections (with 70 or
more nodes) but the best route can be found at level 2 of the search tree.
This results in 4900 paths to explore. On the other hand, if there were
just two connections from each node, the best route will be found at level
70, i.e. O(270). This might happen with a 70 city map where each node
was connected to just two other nodes. The task of finding the shortest
route that visits every city would now mean that the resulting number of
paths is too large for any computer to calculate. In fact, it is estimated that
there are about 270 atoms in the whole universe. Even assuming one atom
per path, all the atoms in the universe would be required just to store

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

86 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

all the paths if a depth-first search or A∗ is used. Unfortunately, most of
the really interesting problems, including several in bioinformatics, have
search spaces and algorithms which are exponential in nature. Also, no
attempt has been made to assess the cost of actually running the algorithm
in the above cases, and this cost must also be included in the estimates
of how long an algorithm will take to find the right solution.

3.7 Use of graphs in bioinformatics

The graph in Figure 3.1 provided an example of maps that can be
searched for routes. Such graphs can also be used to check whether spe-
cific routes exist between two nodes. For example, if it is asked whether
a route exists that starts from S and visits only cities A and F on the way
to G, no such route exists. After A, another city has to be visited to reach
F. In other words, the sequence SAFG is not a route of the map, whereas
SADFG is. Another sequence SDFG is also not a valid route of the map.
Graphs can therefore be used not just to generate routes but also to check
potential routes or, in this case, the sequence of cities that must be visited
between the start and end nodes. Such a sequence can be regarded as a
string of characters, and the task is to determine whether the string is
a valid string, or sequence of characters, according to the structure and
content of an automaton.

Consider the problem of constructing a graph that accepts the follow-
ing four DNA sequences as valid:

ACAATG
ACAAATC
AGAATC
ACCGATC

Figure 3.13 contains a special sort of graph, called an automaton, that
shows how these four sequences can be ‘accepted’ by the automaton. An
automaton adds direction to the arcs in the graph which specify the way
in which links must be followed. This automaton consists of labelled
states 1 to 8, with directed connections between these states. State 1 is
the start state, and states 7 and 8 the final state. Each directed connection
is labelled with a letter which specifies that the connection can only be
followed if the letter is encountered as the next symbol in the string. For
instance, to accept ACAATG, start in state 1 and follow the link to 2,
since the label A on the arc going out from 1 is encountered as the first
character of the sequence. In the act of following a link, the move is

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

USE OF GRAPHS IN BIOINFORMATICS 87

A
1 2 3 5 6 7

8
4

C A T G

CG A

AC

ACAATG = 1, 2, 3, 5, 5, 6, 7
ACAAATC = 1, 2, 3, 5, 5, 5, 6, 8,
AGAATC = 1, 2, 4, 5, 5, 6, 8
ACCGATC = 1, 2, 3, 2, 4, 5, 6, 8

Figure 3.13 A graph as automaton

made to the next character of the sequence (C). In state 2, there are two
choices, and the link to state 3 is followed since the current character is
C. The next character is A, and so on. The numbers by the four sequences
at the bottom left of the diagram provide a history (trace) of the states
entered. If a character is encountered that does not permit the exit from
a state that is not a final state, the automaton ‘stops’ and a reject answer
is returned, i.e. the sequence is not accepted by the automaton. Only if
the automaton stops in a final state (there are no more characters to be
processed) is the sequence accepted. Notice that loops back to earlier
states and self-states are allowed.

A matrix representation can still be used to represent the graph as
automaton, as provided in Table 3.3. The entries in the table are not
distances but conditions that must be satisfied if there is to be a transition
from one node (state) to another. Such conditions become the characters
that must exist in specific positions of the sequence if the sequence as a
whole is to be accepted as valid.

Expressions and grammar

An expression can be derived that provides a general description of the
structure of any sequence that will be accepted by this automaton if
some extra notation is added to the sequence. Let ‘*’ mean ‘zero or more
occurrences’, ‘+’ mean ‘one or more occurrences’, and ‘[|]’ mean ‘or’,
with the alternatives provided on either side of the middle stick. Then
the four sequences ACAATG, ACAAATC, AGAATC and ACCGATC can
be expressed as ‘A [G | C+ | C+G] A* T [G | C]’. That is, a sequence is
accepted by this automaton if (i) it starts with an A, followed by (ii) G, or
by one or more occurrences of C (‘C+’), or by one or more Cs followed
by a G (‘C+G’), followed by (iii) zero or more As (‘A*’), followed by

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

88 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Table 3.3 Two ways of representing the automaton in Figure 3.13. In the top table,
a blank entry means that no path exists between the node number given in the row and
the node number given in the column. A transition between two nodes is permitted
only if the character given in the appropriate cell is encountered. Otherwise, the
automaton stops and ‘rejects’ the string. If the automaton stops in state 7 or state
8, this means that the string is accepted. In the bottom table, each entry in the table
specifies which state the automaton is to switch to if a character is encountered in
a particular state, as given by the row. For instance, if the automaton is in state 1
(row labelled 1) and an ‘A’ is encountered, then the automaton switches to state 2. A
blank entry means that no transition is possible and the automaton therefore cannot
proceed. The entries in boldface (row 6) specify the terminal (accept) states.

1 2 3 4 5 6 7 8

1 = start A
node
2 C G
3 C A
4 A
5 A T
6 G C
7 = goal node
8 = goal node

A C G T

1 2
2 3 4
3 5 2
4 5
5 5 6
6 8 7

(iv) one T, followed by (v) either a G or a C. The state numbers in the
automaton are useful for converting this complex expression into six
transition rules, as follows:

1 sequence → A S2

2 S2 → C S3 | G S4

3 S3 → C S2 | A S5

4 S4 → A S5

5 S5 → A S5 | T S6

6 S6 → G | C

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

USE OF GRAPHS IN BIOINFORMATICS 89

That is, a sequence starts with an ‘A’ followed by state 2 (‘S2’), according
to rule (1). State 2 is either a ‘C’ followed by S3 or a ‘G’ followed by
S4, according to rule (2), and so on. Boldface is used to distinguish the
states of the automaton from the characters of the string. The special
start symbol sequence is used to signify that the set of rules (1) to (6)
starts with rule (1). Such a set of rules, together with a specification of
the symbols that are allowed, including notation symbols such as ‘→’
and ‘|’ as well as a special start symbol, is called a grammar. A trace of
how, for instance, the first of the sequences above has been generated
with this grammar, is as follows:

sequence → A S2 → AC S4 → ACA S5 → ACAA S5 → ACAAT S6

→ ACAATG

The grammar (1) – (6) above contains two types of symbols, apart from
the rewrite (‘→’) and alternative (‘|’) symbols. The symbols in boldface
are non-terminals, meaning that they are symbols that appear on the
left-hand side of rules for expansion and also on the right-hand side of
some rules to allow for loops. The symbols not in boldface are terminal
symbols, meaning that such symbols cannot be expanded further and are
actual characters of the sequence.

When a grammar contains rules of the form S → X or S → X Y
only, that is, when the right-hand side of all rules of a grammar contain
either only one terminal symbol X or a terminal symbol X followed at
most by one non-terminal Y, this is a a right-linear regular grammar.
Sequence expressions that attempt to describe strings accepted or gen-
erated by such grammars, such as the expression ‘A [G | C+ | C+G]
A∗ T [G | C]’, are called regular expressions. Such grammars are among
the simplest grammars possible, and it is easy to construct finite-state
automata, such as the one provided in Figure 3.13, for the sequences
either generated or accepted by such grammars. For every regular
expression or regular grammar, there is an equivalent finite-state au-
tomaton that represents or describes it, and vice versa. Regular expres-
sions are used widely in bioinformatics to search for sequences match-
ing a particular pattern, as given by the regular expression, in DNA
or protein sequence databases. When a regular expression is input to
the database, a finite state automaton is generated from the regular
expression that efficiently and speedily scans the DNA or protein se-
quences in the database to identify partial and total matches against the
expression.

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

90 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

3.8 Grammars, languages and automata

Grammars and automata can be used to study the types of problem
that can be solved with a computer. A grammar is formally defined to
consist of an alphabet, combinations of symbols from this alphabet to
form strings, and a language that contains all the permissible strings
according to the rules of the grammar. More precisely, an alphabet for
DNA, for example, consists of the four symbols ‘A’, ‘C’, ‘G’ and ‘T’, and
this is formally specified using ‘

∑
’ (capital sigma):

∑ = {A,C,G,T}.
A string is any random combination of these symbols, such as

‘AAAAA’, ‘ACGTACGTACGT’ and ‘GGGGCCCCTTTTAAAA’. The
task of a grammar is to specify which of these strings is acceptable or
valid according to the rules of the grammar. For instance, in the previ-
ous use of graphs to represent maps, any random combination of city
sequences (e.g. ‘SAASAGSA’) can be generated, but only a small num-
ber of those combinations are valid according to the actual graph (Fig-
ure 3.1). The graph therefore expresses the permitted combinations of
city sequences (‘SADG’ is a valid sequence or route whereas ‘SDAG’ is
not). The task of a grammar, or graph as automaton, is therefore to
identify the subset of random combinations of symbols (strings) that are
actually permitted. For instance, the graph in Figure 3.1 can be repre-
sented as a grammar (without concern about the distances):

(i) S → SA | SB | SC

(ii) A → AS | AB | AC | AD

(iii) B → BS | BA | BC | BE

(iv) C → CS | CA | CB | CD | CE | CF

(v) D → DA | DC | DE | DF | DG

(vi) E → EB | EC | EF

(vii) F → FC | FD | FE | FG

(viii) G → G

Note the difference between boldface symbols and non-boldface symbols.
For instance, rule (i) states that the non-terminal S can be rewritten or
transformed into terminal S followed by non-terminal B or non-terminal
C or non-terminal D. These eight rules of the grammar all have a non-
terminal on the left-hand side of the rule and a terminal followed by a

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

GRAMMARS, LANGUAGES AND AUTOMATA 91

non-terminal symbol on the right-hand side of the rule (i.e. the rules are
right linear). Notice also that the only way to ‘exit’ the rules is at some
point to rewrite G as G only (rule (viii)). The alphabet for this grammar
is therefore

∑ = {S,A,B,C,D,E,F,G,S,A,B,C,D,E,F,G} and valid strings
(routes) of the grammar are, for example:

(a) S → SA → SAD → SADF → SADFG → SADFG

(b) S → SC → SCS → SCSC → SCSCF → SCSCFG → SCSCFG

That is, of all the possible random combinations of the letters S to G, only
those combinations starting with S and ending with G where the letters
in-between are sequenced according the rules constitute the language
accepted by the graph as automaton. Some of these combinations will
contain loops, such as in the second derivation (b) above where the route
revisits S from C, which in terms of routes may not be desirable. If that
is the case, directions (arrows) will need to be put on the links between
the cities to prevent such loops and the grammar rewritten accordingly.

Automata theory

In automata theory the task is usually to determine whether strings are
part of the language according to the rules of the grammar and using
the symbols of the alphabet. One of the significant discoveries in com-
puter science was the realization that this formulation of automata theory
was general enough to cover all computational problems. For instance,
even asking for the product of two numbers m and n is equivalent to
asking which one of the strings ‘m × n = 1’, ‘m × n = 2’, ‘m × n = 3’,
‘m × n = 4’, ‘m × n = 5’, ‘m × n = 6’, etc., is valid according to the rules
of grammar called ‘arithmetic’, where m and n are non-terminals that can
be rewritten in a variety of ways (e.g. m → 1|2|3|4|. . .). For instance,
‘2 × 3 = 6’ is a valid string whereas ‘2 × 3 = 5’ is not.

Finite-state automata are not adequate for coping with certain nested
structures found in biosequences, however. RNA sequences sometimes
contain loops, whereby the RNA folds back on itself to form a double
strand (Figure 3.14). RNA can form a looped structure when there is
complementary base pairing within a sequence. In the left-hand figure,
the mRNA primary sequence ‘NNNNNAAAAAAAAAAUUUUUUUU-
UUNNNNN’, where ‘N’ stands for any nucleotide, forms a secondary
structure loop when the subsequence ‘AAAAAAAAAAUUUUUUUUUU’

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

92 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

A U

A U
A U
A U
A U
A U
A U
A U
A U
A

N N N N NN

NNNNNAAAAAAAAAAUUUUUUUUUUNNNNN

mRNA

Secondary
structure

N N N N

U

C G

C G
C G
C G
C G
C G
C G
C G
C G
C

N N N N NN

NNNNNCCCCCCCCCCGGGGGGGGGGNNNNN

mRNA

Primary structure

Secondary
structure

N N N N

G

Figure 3.14 Looped RNA structure with equal numbers of complementary base

pairs with its complement bases, and similarly for the right-hand fig-
ure involving Cs and Gs. Such looping can form the basis for remov-
ing introns from mRNA, where the loop is ‘cut’ out and the sequence
‘NNNNNNNNNN’ is left as the exon. Also, non-translated transcripts
for transfer RNA (tRNA) can form such loops, called ‘hairpins’, which
are required for the correct functioning of tRNA.

To cope with arbitrary long expressions where there is a specific rela-
tionship between two or more symbols, a more powerful grammar than
a regular grammar is needed. For instance, here is a way of capturing the
information that only those sequences that contain an equal amount of
two symbols are strings of the language as follows: L = {AnUn |CnGn,
n ≥ 1}. That is, a valid string of the language is some number n of As
followed by the same number of Us, or some number n of Cs followed by
the same number of Gs, where n is greater than or equal to 1. In grammar
terms, the rules for such structures can be:

loop → loop1| loop2

loop1→ AU | A loop1U
loop2→ CG | C loop2 G

The recursion of loop1 and loop2 (that is, the occurrence of loop1 and
loop2 on both the left-hand and right-hand side of their rules) allows
for loop1 or loop2 to be incorporated as many times as one needs. An
example of a trace is: loop → loop2 → C loop2G → CC loop2GG →
CCC loop2GGG → CCCCGGGG, where italics signify the most recently
inserted nucleotides. The recursion terminates when loop1 or loop2 is
expanded without either recurring, as in the final step of the trace above.

The automaton in Figure 3.15(a) is a finite-state automaton that is
not powerful enough, since it accepts strings where there are an unequal
number of complementary characters. Given the grammar for generating

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

GRAMMARS, LANGUAGES AND AUTOMATA 93

Loop1

Loop2

Loop1

Loop2

1

2

3

U

G

C
G

U

A

5

4

1

2

3

U
Count = count − 1

Count = 0

Count = count − 1

Count = count + 1

Count = count + 1

Count = count − 1

Count = count − 1
G

C
G

U

A

5

4

(a) Finite state automaton

(b) Push-down automaton

Figure 3.15 The difference between a finite-state automaton and a push-down au-
tomaton

loops (Figure 3.13), a finite-state automaton (FSA) will not be powerful
enough to accept only those strings specified by the grammar. That is,
while the FSA will accept strings of the form ‘AAAUUU’ and ‘CCCGGG’
it will also accept, incorrectly, strings of the form ‘AUUU’ and ‘CCCCG’.
In other words, an FSA has no memory of what has occurred earlier in
the string but simply moves from state to state depending on the symbol
encountered in the input string. It is possible (Figure 3.15(a)), however, to
construct a push-down automaton (PDA) by attaching some memory to
the automaton in the form of a count variable which is incremented every
time the symbol ‘A’ or ‘C’ is encountered and decremented every time the
symbol ‘U’ or ‘G’ is encountered. If it is stipulated that that only those
strings that result in the PDA terminating in states 4 and 5 with count
equal to zero are accepted, then only those strings that have an equal
number of As followed by an equal number of Us (and equal number
of Cs followed by an equal number of Gs) will indeed be accepted. The
PDA is ‘more powerful’ than the FSA in that it accepts fewer strings than
the FSA.

A ‘more powerful’ grammar or automaton results in fewer strings
being accepted (or generated) than a finite state automaton. ‘More pow-
erful’, in computational terms, means satisfying more constraints. That

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

94 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

is, a finite state automaton can accept or generate strings of the form
XnYm (any number of Xs followed by any number of Ys), some of which
will satisfy the constraint that n = m by chance (for instance, three Xs
followed by three Ys). However, once it is decided to accept only a sub-
set of these strings, namely, only those strings where there is a specified
relationship between the number of Xs and the number of Ys, a more
powerful formalism and automaton are required. Also, the type of in-
formation that can appear on a link has been increased to include an
action, whereas a finite-state automaton can only have conditions. In
this case, the action consists of updating a counter which must be stored
in memory. Therefore, a push-down automaton requires a memory, and
that is what makes the automaton able to deal with strings where there
are constraints concerning the number of occurrences of two symbols in
the string.

More powerful automata

Imagine that the task now is to accept or generate strings where there
is a dependency between three symbols in a string, such as an equal
number of Xs, Ys and Zs, in that order. For example, the language may
be: L = {AnCn Un, n ≥ 1}. A push-down automaton will now not be
powerful enough. If only one counter variable is used to check that the
number of Xs is equal to the number of Ys, when the counter returns
to zero after the last Y there will be no information as to how many Xs
and Ys were encountered. What is required is a second counter which is
set to the same value as the number of Xs first encountered, so that it
stores this information even after the first counter is returned to 0 after
the last Y. An automaton with two memory counters is called a linear-
bounded automaton (LBA, Figure 3.16). An LBA is required to accept
strings where there are specified relationships between three symbols.

1 2 3
Count2 = count2 + 1

A C U

Count1 = count1 − 1
Count2 = count2 − 1

Count1 = count1 − 1
Count2 = count2 − 1

Count1 = 0
Count2 = 0

C U

Count2 = count2 + 1Count1 = count1 + 1

Figure 3.16 A linear-bounded automaton (LBA)

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

GRAMMARS, LANGUAGES AND AUTOMATA 95

Two counter variables are now required to accept only those strings that
conform to L = {An Cn Un, n ≥ 1}, that is, only strings containing one
or more As followed by the same number of Cs followed by the same
number of Us. The first counter counts the number of As and the second
the number of Cs. Both counters are decremented with every U found.
Any string that does not finish in state 3 with count1 and count2 equal
to zero is rejected by this LBA.

If there is a need to check for relationships between more than three
symbols in a string, a Turing Machine – which essentially has an infinite
number of counters available – is required. Turing Machines are the most
powerful type of computing machine imaginable. That is, while no real
Turing Machines exist (because of the need for an infinite number of
counters or, as is more conventionally stated, an infinite memory) there
is no more powerful machine imaginable, if by ‘machine’ is meant some
mechanism that can follow an algorithm systematically and rigorously to
return a correct result. Bioinformatics has fortunately so far not required
the use of an automaton that is the equivalent of a Turing Machine for
solving problems in biology.

One of the reasons for looking at the relationship between languages,
grammars and automata in some detail is to relate the types of problem
that can be computed with classes of complexity. A finite-state automa-
ton solves problem in linear time. For instance, if it takes the finite-state
automaton in Figure 3.13 five units of time to process the string ACATG
(one unit of time for each symbol), then it will take 10 units of time to
process ACAAAAAATG (one unit of time for each path followed). This
is because the rules of a regular grammar only allow the occurrence of
one terminal symbol or, if a non-terminal symbol appears, only one non-
terminal which in turn can be expanded only as one terminal symbol. A
push-down automaton for accepting strings of a context-free language
will take longer than linear time, since any combination of symbols can
appear on the right-hand side of a rule. This increases the branching
factor of the tree used to generate sequences which, as seen earlier with
regard to search trees, leads to polynomial time increase, where the in-
crease depends on the number of branches possible at each node of the
tree. After push-down automata, complexity becomes at least exponen-
tial (the depth of the tree increases) and, in the case of a Turing Machine,
semi-decidable. That is, if there is a problem that requires the power of
a Turing Machine, it has to be accepted that the automaton may loop
forever for some strings which are not strings of the language. The au-
tomaton will keep trying different ways to identify whether the string
is or is not a string of the language. If the string is indeed a string of

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

96 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

the language, the Turing Machine will eventually stop in an accept state.
If, however, the string is not a string of the language, it is possible that
the Turing Machine will not stop in a reject state. It may loop for-
ever trying to find a way of accepting the string. It will not be known
when to switch off the automaton, since we it will not be known if the
Turing Machine will loop forever or would have found the answer (which
may be an accept) the moment after the automaton is switched off. For
most strings that are not part of the language the Turing Machine will
eventually halt in a reject state, but one of the most important findings in
computer science is that it is not possible to predict for which non-strings
the Turing Machine will halt in a reject state and for which strings it will
loop forever (the halting problem). That is, it is not possible to find or
run an algorithm that, prior to running the Turing Machine with that
algorithm on some sequence, will decide in all cases whether that Turing
Machine will halt or not for that sequence.

3.9 Classes of problems

This leads to a classification of problems that are P (for polynomial),
NP (for non-deterministic polynomial), and NP-complete. A problem
falls in the class P if it can be solved at worst in polynomial time (such
as with a push-down automaton). A problem falls in the class NP if
it can only be solved by a Turing Machine that allows more than one
branch with the same label. However, since there are a number of possible
exit routes from a node in the automaton for the same character in the
string, all of them will need to be tried. Since a Turing Machine can do
what it likes with the string, including rewriting it, it will not be known
when to stop the machine if it continues to run for a long time. All that
can be said is that, if the string is a valid string of the language, the
Turing Machine will eventually halt. The reason this class of problems
is called non-deterministic polynomial is to express the theoretical view
that, if there is an infinite number of machines each of which could
explore each path of the search tree in parallel, the problem could be
solved in polynomial time. However, some problems are such that the
exponential nature of the problem may soon lead to there being more
paths to explore than computers on the planet, or even the universe.
Finally, the class NP-complete refers to those problems that are NP but
where the solution, if returned, can be verified in linear or polynomial
time at worst. For instance, searching for any route between S and G is

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

CLASSES OF PROBLEMS 97

an exponential problem, but when a route is found it can be verified by
simply following the route and seeing if the route starts at S and finishes
at G (i.e. linear time depending on the number of cities visited). However,
to verify a shortest route returned by the search algorithm can take as
long as searching the tree to start off with. That is, a check needs to
be made that among all the other routes there is no shorter route. One
of the biggest unsolved problems in computer science is to determine
whether, for all the problems that fall in the class NP (but not for the
class NP-complete), there are algorithms that have not yet been found
for solving these problems in polynomial time, i.e. does NP = P? There
are theoretical findings that indicate that, if a polynomial-time solution
can be found for just one of the problems in the NP class, there will be
polynomial-time solutions for all problems in the NP class. However, so
far no one has managed to conclusively prove that a single problem in
NP actually falls in the class P.

These comments on complexity assume that what is required is always
to find the provably best or optimal answer to a problem. For instance,
the problem of finding the provably best alignment in a multiple sequence
alignment problem is an NP problem (there are many different locations
to insert gaps, for instance), but often a good solution is required rather
than the best solution. Also, the complexity of an algorithm for solving
a problem always assumes a worst-case scenario, which will sometimes
but not always occur. Great savings in time can also be obtained if solu-
tions are required that are better than those currently available (heuristic
solutions), or solutions which are as close to optimal as can be determined
within a specified bound (approximated solutions).

This chapter has shown that, while new technology allows researchers
to compute solutions to ever more complex problems, some tasks can
require more computation than is possible with every computer running
for the rest of time. Even some apparently simple tasks such as finding
the shortest path through a graph, or searching for matching strings, can
be NP-complete. Therefore for many problems in science, engineering
and, most importantly, bioinformatics, more intelligent search and op-
timization strategies must be used. The heuristic hill-climbing methods
seen in this chapter are among the simplest of the search methods cov-
ered in this book. These first three chapters have laid the foundations
of biology, bioinformatics and computer science. The remainder of the
book describes the many intelligent methods currently in use in bioinfor-
matics, ranging from the commonly-used standard methods to the more
unusual and yet-to-be applied techniques.

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

98 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

3.10 Summary of chapter

1 Graphs consist of nodes (vertices) connected by links (arcs). Many
problems in computer science and bioinformatics can be converted
into a graph form for search purposes.

2 Searching graphs can be through exhaustive or heuristic methods.
Exhaustive methods typically use depth-first or breadth-first meth-
ods to search the tree systematically. Heuristic methods require some
domain-specific information, such as distance remaining estimates, to
guide the search.

3 Hill-climbing is a popular heuristic method for a search. Simple hill-
climbing takes the first option that is better than where the search
currently is, whereas steepest-ascent hill-climbing examines all child
nodes first before choosing the best path.

4 Hill-climbing does not guarantee to find the optimal path. Branch-
and-bound methods, supplemented by pruning of redundant nodes
and the distance remaining, do guarantee to find the optimal path.

5 In all search cases, the complexity of the search increases as the num-
ber of nodes and links increases. This can be problematic for a number
of bioinformatics problems requiring a search, such as accepting or
generating strings of characters.

6 Finite-state automata are a method for dealing with regular grammars
and the expressions generated by such grammars. They are efficient
but lack the power to deal with strings where there is some relation-
ship between two or more symbols in strings.

7 Push-down automata can handle strings in which there is some re-
lationship between two symbols but need some memory to work
effectively. Some bioinformatics phenomena, such as looped RNA
structures, require the power of a push-down automaton. Languages
handled by push-down automata require context-free grammars for
their generation.

8 Beyond context-free grammars lies increased complexity (linear-
bounded automata and Turing Machines). Problems can be classified

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

FURTHER READING 99

as polynomial or non-deterministic polynomial. Polynomial problems
require polynomial algorithms that grow linearly in terms of memory
and time or at worst they grow in polynomial time. Non-deterministic
polynomial (NP) problems are characterized by exponential growth.
Unfortunately, a number of problems in bioinformatics fall in the NP
class.

3.11 Further reading

Hopcroft, J.E., Motwani, R. and Ullman, J.D. (2000) Introduction to Automata
Theory, Languages and Computability, 2nd edn, Addison Wesley.

Luger, G.F. (2002) Artificial Intelligence: Structures and Strategies for Complex Prob-
lem Solving, Addison Wesley.

Winston, P.H. (1992) Artificial Intelligence. Addison Wesley.

JWBK023-03 JWBK023-Keedwell March 31, 2005 2:55 Char Count= 0

100

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

Part 2
Current Techniques

101

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

102

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

4
Probabilistic Approaches

4.1 Introduction to probability

Probability is the branch of mathematics which is concerned with the
likelihood that events will occur. It is an invaluable tool for scientists
since an event is often not guaranteed to occur, but can only be charac-
terized by the fact that it will occur an average number of times given a
number of trials. This is also of particular importance to bioinformati-
cians as the interactions and reactions that occur in biological processes
can often only be characterized by probability theory. Probability theory
can also be useful in determining the underlying structure of datasets or
sequences. This chapter firstly provides a short background to probability
and then details a number of the probabilistic approaches to bioinfor-
matics problems.

Conditional probability is different from frequentist probability. For
example, if 55 per cent of the students in a department are female and
45 per cent are male, then the event: ‘a randomly selected student is fe-
male’ has a probability, according to the frequentist approach, of 0.55,
where the probability ranges from 0 (impossible) to 1 (necessary). Such
a probability measure reflects data that has already been collected, and
a frequentist approach works provided there is an accurate record of the
gender of all students. However, in some cases this may not be possi-
ble because the data does not exist, or the accuracy of the data cannot
be relied upon. In such cases we have to reason under conditions of
uncertainty, where we may need to allocate provisional measures of be-
lief in certain facts before we can draw conclusions. For instance, if an

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd

103

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

104 PROBABILISTIC APPROACHES

insurance company has to decide what the insurance premium should be
to cover a pharmaceutical company that is planning to introduce a new
anti-cancer drug, with the possibility of toxic side-effects not yet known
for the population at large, the insurance company will lose business if
it adopts a ‘wait-and-see’ policy before it sets its premium, especially if
national law insists that the pharmaceutical company has to have insur-
ance policies in place before the drug can be released. In such cases the
insurance company must try to work out a competitive premium based
on what is known as well as what it believes it knows, and hope it gets it
right. The insurance company needs a formalism that will allow it to play
around with various hypotheses that will allow it to calculate ‘best-case’
and ‘worst-case’ scenarios, where such scenarios will make assumptions
about mortality rates and toxic side-effects as well as a range of com-
pensation claims that may arise. Conditional probability approaches are
widely used to deal with such uncertain situations.

Similarly, there may be uncertainty as to the cause of a particular event.
Let us say that the insurance company is presented with a claim from an
individual that taking the anti-cancer drug has led to severe side-effects,
including loss of energy and therefore loss of job. The company will need
to work out the probability that the drug is to blame given the loss of
energy and other factors, such as natural ageing or the original cancer
having caused bodily damage before the drug was administered for the
first time. Frequentist data may be missing when various conditions affect
an individual in specific ways.

Related concepts here are those of independent and dependent events.
Two events are independent if the probability of either of them remains
the same if the experiment is repeated many times. For instance, the event
of ‘the coin will land heads’ will remain at 50 per cent, no matter how
often the coin is flipped, assuming the coin is fair. If the first time the coin
is flipped (first event) it lands on heads, there is still a 50–50 chance that
the next time it is flipped (second event) it will land on heads, and the
next time, and the next time, and so on. While the sequence of flipping
the coin 20 times and it landing on heads each time may have very low
probability, each time the coin is flipped there is a 50–50 chance of it
landing on heads. The result of a specific coin flip event is independent of
the result of the previous coin-flip event. Compare this with 20 coins in a
bag, 10 American coins and 10 British coins. The event of taking a coin
out of the bag, with the result being an American coin, is 50–50; but if
the coin is not put back in the bag the chance of the same event (‘the event
of the coin being American’) is reduced the next time the experiment is
repeated, since there are fewer American coins in comparison to British

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

BAYES’ THEOREM 105

coins. The outcome of the second event is dependent on the outcome of
the first.

There is therefore a difference between joint probability and condi-
tional probability when dealing with sequences of events. In the case of a
coin being flipped, the joint probability of a sequence of four consecutive
flips resulting in four heads is the product of each flip independently of the
other flips, i.e. 1/2 ∗ 1/2 ∗ 1/2 ∗ 1/2 = 0.0625. The probability of each event is
multiplied by the probability of the next event in the sequence, and so on,
until the end of the sequence is reached. If the four flips are represented
by A, B, C and D, respectively, the probability of four consecutive heads
is written as P(A, B, C, D) which is calculated as P(A) ∗ P(B) ∗ P(C) ∗
P(D). The events here are all independent of each other. However, the
sequence of four American coins being extracted from the bag one after
another, without replacement of the coins, consists of dependent events
whereby the probability of a later event must take into account the prob-
ability of an earlier event. That is, if there are 10 American and 10 British
coins in a bag, the probability of the first event is 1/2, but the probabil-
ity of the second event has to take into account the probability that an
American coin was removed in the previous event. The probability of the
second coin being American is reduced and is now 9

20 . The probability
sequence therefore is 1/2 ∗ 9

20 ∗ 8
20 ∗ 7

20 , which is 0.0315. If A, B, C and
D represent the four events of taking a coin from the bag, this sequence
can be represented as A ∗ B | A ∗ C | B ∗ D | C, where ‘|’ stands for ‘given’
or ‘depending on’. That is, the probability of A, B, C and D, written as
P(A, B, C, D) is now P(A) ∗ P(B | A) ∗ P(C | AB) ∗ P(D | ABC), where
P(X | YZ. . .) means that the probability of X depends on the probability
of Y and Z and . . . occurring in sequence or as a chain of events.

4.2 Bayes' Theorem

Examining what P(B | A) is in the above example, while the result is 9
20 ,

another way to express this is as follows:

P(B |A) = P(AB)
P(A)

where P(AB) is the joint probability of A and B occurring. In other words,
for this example above,

P(B |A) = P(AB)
P(A)

=
1
2 ∗ 9

20
1
2

= 9
20

.

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

106 PROBABILISTIC APPROACHES

Some simple algebraic manipulation then follows:

P(B |A) = P(AB)
P(A)

⇒ P(AB) = P(A) × P(B |A)

⇒ P(AB) = P(B) × P(A |B)

⇒ P(A |B) = P(A) × P(B |A)
P(B)

⇒ P(A |B) = P(B |A) × P(A)
P(B)

.

In other words, the probability of an event B occurring given that A has
occurred has been transformed into a probability of an event A occurring
given B has occurred. This is Bayes’ Theorem. More formally, Bayes’
Theorem states:

P(H |E) = P(E |H) × P(H)
P(E)

where P(H | E) is the posterior probability of a hypothesis H after con-
sidering the evidence E, P(E |H) is the likelihood and gives the proba-
bility of the evidence E assuming H (the conditional probability), P(H)
is the prior probability of H alone, and P(E) is a normalizing or scaling
constant to ensure that the posterior probability adds up to 1.

Bayes’ Theorem is very useful when reasoning under conditions of
uncertainty, since it allows us to reason about the prior event H if a
subsequent event E has occurred but we do not know whether event
H has in fact occurred. For instance, given a bag with 10 British and 5
American coins, if only the event E is observed of a second coin being
removed from the bag being American, we can still infer the probability
of H being an American coin removed as a first event, as follows (where
FCA is ‘first coin American’ and SCA is ‘second coin American’):

P(H |E) = P(E | H) × P(H)
P(E)

⇒ P(FCA |SCA) = P(SCA |FCA) × P(FCA)
P(SCA)

.

To calculate this probability a probability tree is drawn, as in Figure 4.1,
which identifies all possible outcomes. It is assumed that coins are not

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

BAYES’ THEOREM 107

First coin American (FCA)

Second coin American (SCA) Second coin American (SCA)

5/15 = 0.33

Yes

Yes

No

No

4/14 = 0.29 10/14 = 0.71 5/14 = 0.36 9/14 = 0.64

10/15 = 0.66

Yes No

Figure 4.1 A probability tree that describes all possible situations when there are
15 coins in a bag of which five are American and 10 are British

replaced in the bag after being extracted. Hence, at the first level of the
tree there is a 0.33 probability that the first coin is American and 0.66
probability that the first coin is British. Once the first coin is taken from
the bag, the second level of the tree describes the probabilities of the
second coin being American, taking into account the two possibilities at
the level above. For example, if the first coin had been British (10/15),
the chances of the second coin also being British are 9/14. Bayes’
Theorem allows reasoning over what the chances of the first coin being
American were if only an American coin was observed being taken
from the bag at the second stage (as a second event). This is reasoning
under uncertainty. The leaves of the tree (bottom-most layer) can be
referred to as ‘SCA = yes|FCA = yes’, ‘SCA = no|FCA = yes’, ‘SCA =
yes|FCA = no’ and ‘SCA = no|FCA = no’, reading from left-to-right
respectively.

Once this tree is available, the probability of whether the first coin was
American can be calculated as follows (all subsequent calculations are
rounded to two significant places):

P(FCA |SCA) = P(SCA |FCA) × P(FCA)
P(SCA)

⇒ P(FCA |SCA) = 0.29 × 0.33
P(SCA)

.

That is P(SCA|FCA), which is 0.29 (the bottom left-hand ‘yes’ branch) in
Figure 4.1, is multiplied by P(FCA) alone (the top left-hand ‘yes’ branch).
In other words, ‘P(X | Y)’ means the probability to be found on the branch

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

108 PROBABILISTIC APPROACHES

under node X which in turn is under node Y in the probability tree. To
calculate P(SCA) – the denominator – is more complex. There are two
possibilities: the bottom left ‘yes’ branch, and the third from left bottom
‘yes’ branch. That is, the second coin being American has to take into
account both that the first coin was American and that the first coin was
not American. In other words, P(SCA) as denominator has to take into
account P(SCA | FCA = yes) and P(SCA | FCA = no). P(SCA | FCA =
yes) is the joint probability P(SCA | FCA = yes) × P(FCA = yes), while
P(SCA | FCA = no) is the joint probability of P(SCA | FCA = no) ×
P(FCA = no). Putting all this into the formula gives:

P(FCA |SCA) = 0.29 × 0.33
P(SCA)

⇒ P(FCA |SCA) = 0.29 × 0.33
P(SCA |FCA = yes) + P(SCA |FCA = no)

⇒ P(FCA |SCA) = 0.29 × 0.33
(0.29 × 0.33) + (0.36 × 0.66)

⇒ P(FCA |SCA) = 0.1
0.1 + 0.22

⇒ P(FCA |SCA) = 0.1
0.32

= 0.31.

In other words, if the second coin that is taken from the bag is seen to be
American, then there is a 31 per cent chance that the first coin was also
American (hence a 69 per cent chance that the first coin was British).

Another advantage of Bayes’ Theorem is that it can take into ac-
count new evidence. Consider the following example. A drugs manu-
facturer claims that its random roadside drug test will detect the pres-
ence of cannabis, cocaine and other drugs in the blood (i.e. show pos-
itive for a driver who has taken drugs in the last 72 h) 90 per cent
of the time. However, the manufacturer admits that 15 per cent of all
drug-free drivers also test positive. A national survey indicates that
20 per cent of all drivers have taken drugs during the last 72 h. One
of your friends has just told you that she was recently stopped by the
police and the roadside drug test showed positive. She denies having
taken drugs. Bayes’ Theorem can be used to calculate the probabil-
ity that your friend took drugs during the 72 h preceding the drugs
test. First, draw the probability tree (Figure 4.2, non-italic figures).
Then apply Bayes’ Theorem, assuming that H is having taken drugs
(TD) and E is testing positive (TP). That is, the probability of your friend

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

BAYES’ THEOREM 109

Took drugs (TD)

Tests positive (TP)

Yes

0.2

No

Yes No

Tests positive (TP)

0.05

0.99

0.9 0.1

0.01 0.25

0.15 0.85

0.75

0.8
0.95

Yes No

Figure 4.2 Bayes’ Theorem can also take into account new information (new infor-
mation in italics)

having taken drugs given that the random roadside test showed positive
is calculated as follows:

P(H |E) = P(E |H) × P(H)
P(E)

⇒ P(TD |TP) = P(TP |TD) × P(TD)
P(TP)

⇒ P(TD |TP) = 0.9 × 0.2
P(TP)

.

To calculate TP, take into account the two possibilities of testing positive
having taken drugs and not having taken drugs:

P(TD |TP) = 0.9 × 0.2
P(TP)

⇒ P(TD |TP) = 0.9 × 0.2
P(TP |TD = yes) + P(TP |TD = no)

⇒ P(TD |TP) = 0.9 × 0.2
(0.9 × 0.2) + (0.15 × 0.8)

⇒ P(TD |TP) = 0.18
0.18 + 0.12

= 0.18
0.3

= 0.6.

In other words, there is a 60 per cent chance that your friend did indeed
take drugs 72 h prior to the roadside test and only a 40 per cent chance
that she is telling the truth. Now imagine that new information arrives
that the roadside drug test will now show positive for drivers who have

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

110 PROBABILISTIC APPROACHES

taken drugs 99.9 per cent of the time but that the number of drug-free
drivers showing positive has gone up to 25 per cent (Figure 4.2, new
probabilities in italics under TP at the leaves of the tree). It is a simple
matter to enter the new values into the above equations:

P(TD |TP) = 0.99 × 0.2
(0.99 × 0.2) + (0.25 × 0.8)

= 0.198
0.198 + 0.2

= 0.198
0.398

= 0.5

That is, the new information increases the chances of your friend telling
the truth to 50–50.

If even more recent information arrives that indicates that the origi-
nal survey of the number of drivers who have taken drugs was wrong
(20 per cent) and that the revised figure should be 5 per cent (Figure 4.2,
italic figures under TD), this can also be incorporated:

P(TD | TP) = 0.99 × 0.05
(0.99 × 0.05) + (0.25 × 0.95)

= 0.05
0.05 + 0.24

= 0.05
0.29

= 0.17

That is, the new information now increases the probability that your
friend is telling the truth to 83 per cent. This dramatic improvement in
the probability that she is telling the truth results from the high false
positive rate as well as reduced chances that she drove after taking drugs.

Finally, Bayes’ Theorem can also be used to calculate what sort of false
positive rate is required to ensure that drivers who test positive after a
random roadside drug test are at least 80 per cent certain to have taken
drugs, taking all the new information into account. Try a false positive
rate of 6 per cent:

P(TD |TP) = 0.99 × 0.05
(0.99 × 0.05) + (0.06 × 0.95)

= 0.05
0.05 + 0.06

= 0.05
0.11

= 0.45

The false positive rate is not low enough, so try 2 per cent:

P(TD |TP) = 0.99 × 0.05
(0.99 × 0.05) + (0.02 × 0.95)

= 0.05
0.05 + 0.02

= 0.05
0.07

= 0.71

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

BAYESIAN NETWORKS 111

In fact, a false positive rate of 1 per cent is required to reach the figure
of being at least 80 per cent certain that drivers who are randomly tested
have indeed taken drugs:

P(TD |TP) = 0.99 × 0.05
(0.99 × 0.05) + (0.01 × 0.95)

= 0.05
0.05 + 0.01

= 0.05
0.06

= 0.83

The requirement for such a low false positive rate is a consequence of
only 5 per cent of drivers taking drugs, according to the survey.

4.3 Bayesian networks

Bayes’ Theorem can also be generalized to deal with belief networks
(e.g. Delcher et al., 1993). Formally, a Bayesian network is a directed
(each arc is an arrow), acyclic (no loops are possible) graph where nodes
represent features or attributes (called random variables), arcs denote
dependencies as given by some set of rules and the root node is the start
node with no incoming links. Also required is a prior probability table for
each variable and conditional probabilities to link together all attributes.
That is, a node X is linked to another node Y provided there is direct
influence of X on Y (in which case the arrow is from X to Y).

For instance, if an insurance company has to decide how to calculate an
insurance premium to cover a pharmaceutical company that is planning
to introduce a new anti-cancer drug, with the possibility of toxic side-
effects not yet known for the population at large, the insurance company
can provide a basic set of rules, with hypothetical probabilities. So, for
example, the following rules may describe one scenario. ‘If the insurance
company sets the premium at $50 million dollars a year the drug will be
released. If the anti-cancer drug is released, it may cure the cancer. If the
drug is released and given to a patient, the patient may die. If a patient
dies after receiving the drug, there may be a claim made against the drug
company by the patient’s relatives. If a claim is made against the drug
company, the insurance company may have to pay out more than a mil-
lion dollars’. This belief network is represented in Figure 4.3. The nodes
and links represent rule-based relationships between attributes, and
conditional probabilities are assigned to link pairs of nodes together in the
network. Once the network is configured, the probabilities of a hypoth-
esis, such as ‘premium set at $50m’, or whether a patient has died, can

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

Pr
em

iu
m

se
t

at
 $

50
m

ill
io

n

P
 (

pr
em

iu
m

 =
 $

50
m

)
=

0.
5

D
ru

g
re

le
as

ed
C

an
ce

r
cu

re
d

Pa
ti

en
t

di
es

C
la

im
ag

ai
ns

t
co

m
pa

ny

M
ill

io
n

do
lla

r
pa

yo
ut

P
 (

dr
ug

 r
el

ea
se

d
 p

re
m

iu
m

 s
et

)
=

0.
8P

 (
ca

nc
er

 c
ur

ed
 d

ru
g

re
le

as
ed

)
=

0.
8

P
 (

ca
nc

er
 c

ur
ed

 d
ru

g
no

t
re

le
as

ed
)

=
0.

2

P
 (

no
 c

la
im

 p
at

ie
nt

 d
oe

s
no

t
di

e)
 =

 0
.9

5
P

 (
no

 c
la

im
 p

at
ie

nt
 d

ie
s)

 =
 0

.0
5

P
 (

cl
ai

m
 p

at
ie

nt
 d

ie
s)

 =
 0

.9
5

P
 (

cl
ai

m
 p

at
ie

nt
 d

oe
s

no
t

di
e)

 =
 0

.0
5

P
 (

dr
ug

 r
el

ea
se

d
 p

re
m

iu
m

 n
ot

 s
et

)
=

0.
2

P
 (

dr
ug

 n
ot

 r
el

ea
se

d
 p

re
m

iu
m

 n
ot

 s
et

)
=

0.
8

P
 (

dr
ug

 n
ot

 r
el

ea
se

d
 p

re
m

iu
m

 s
et

)
=

0.
2

P
 (

pa
ti

en
t

di
es

 d
ru

g
re

le
as

ed
)

=
0.

3
P

 (
pa

ti
en

t
di

es
 d

ru
g

no
t

re
le

as
ed

)
=

0.
5

P
 (

pa
ti

en
t

do
es

 n
ot

 d
ie

 d
ru

g
no

t
re

le
as

ed
)

=
0.

5
P

 (
pa

ti
en

t
do

es
 n

ot
 d

ie
 d

ru
g

re
le

as
ed

)
=

0.
7

P
 (

pa
yo

ut
 c

la
im

)
=

0.
9

P
 (

pa
yo

ut
 n

o
cl

ai
m

)
=

0.
01

P
 (

no
 p

ay
ou

t
 n

o
cl

ai
m

)
=

0.
99

P
 (

no
 p

ay
ou

t
 c

la
im

)
=

0.
1

Fi
gu

re
4.

3
B

ay
es

ia
n

be
lie

f
ne

tw
or

k

112

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

BAYESIAN NETWORKS 113

be calculated from an event such as a million dollar payout having been
made. Probabilities and conditional probabilities can then be attached to
this belief network.

Now imagine the event ‘payout of more than a million dollars made’.
What are the implications for P(premium = $50m)? Now start working
backwards. First examine ‘claim against company’, i.e.

P(payout | claim) = 0.9 and P(payout | no claim) = 0.01.

Continue to work backwards through the network, i.e.

P(claim | patient dies) = 0.95,

P(claim | patient does not die) = 0.05,

P(no claim | patient dies) = 0.05, and

P(no claim | patient does not die) = 0.95.

For patients, continue identifying the conditional probabilities:

P(patient dies | drug released) = 0.3,

P(patient dies | drug not released) = 0.5,

P(patient does not die | drug released) = 0.7, and

P(patient does not die | drug not released) = 0.5.

Similarly, follow the chain backwards through drug released and drug
not released until ‘premium set’ is reached. Combine these probabilities:

P(million dollar payout, claim against company, patient dies, drug
released, premium set at $50m) =

P(million dollar payout) × P(million dollar payout | claim against
company) × P(claim against company | patient dies) × P(patient
dies | drug released) × P(drug released | premium set at $50m).

One particular path through the network is:

‘million dollar payout’ = 0.9,

‘claim against company | patient dies’ = 0.95,

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

114 PROBABILISTIC APPROACHES

‘patient dies | drug released’ = 0.3,

‘drug released | premium set’ = 0.8, and

‘premium set at $500m’ = 0.5,

which when multiplied together gives 0.9 × 0.95 × 0.3 × 0.8 × 0.5 =
0.103. This combined probability is added to all other probabilities re-
sulting from all other paths for ‘premium set at $50m’ to give an overall
probability for ‘premium set at $50m’. At that stage the insurance com-
pany can decide whether it has confidence in its original hypothesis that
the premium should be set at $50m, taking into account the probabilities
of all conditional probabilities in the network. That is, if the resulting
probabilities from all paths sum to a probability greater than 0.5 for
‘premium set at $50m’, the insurance company has some assurance that
it has calculated the probabilities appropriately. For instance, assuming
that the interest is only in the implications of a payout having been made
for whether a patient has died, four paths are generated:

(payout | claim = 0.9) × (claim | patient dies = 0.95) = 0.885

(payout | no claim = 0.01) × (no claim | patient dies = 0.05) = 0

(payout | claim = 0.9) × (claim | patient does not die = 0.05)
= 0.045

(payout | no claim = 0.01) × (no claim | patient does not die = 0.95)
= 0.01

To determine the probability of the patient having died, add together
those probabilities that have the same hypothesis, i.e.

‘patient dies’ = 0.885 + 0 = 0.885, and

‘patient does not die’ = 0.045 + 0.01 = 0.055.

That is, if a payout has been made, it is more likely that the patient has
died (0.885) than that the patient has not died (0.055). In this case, the
probabilities do not add to 1, and Bayesian networks usually adopt some
additional normalization procedure to ensure that the different states of a
hypothesis always sum to 1. What has been described here is known as a
‘naı̈ve’ Bayesian approach, since it assumes that all the variables that
appear in the network are totally independent of each other (that there
are no statistical dependencies, apart from the conditional probabilities,

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

BAYESIAN NETWORKS 115

between any of the variables of features). This is unlikely to be the case
in real-world situations.

The main problem with Bayesian belief networks, as seen in the above
example, is that the number of paths can grow exponentially. There
are 128 paths to be checked (two for ‘payout’, four for ‘claim’ and ‘no
claim’, four for ‘patient dies’ and ‘patient does not die’, and four for
‘drug released’ and ‘drug not released’), assuming that the only interest
is in checking whether the hypothesis ‘premium set at $50m dollars’ is
correct. However, if ‘premium set’ has a number of different values that
need individual checking, the number of paths will grow. Therefore some
heuristic methods for searching graphs must be adopted to ensure that
Bayesian networks remain tractable when networks have a large number
of nodes.

Also, the issue of where the initial assignment of conditional proba-
bilities to the network comes from has not been mentioned. These may
have to be extracted from the insurance company’s archived data of pre-
viously made claims for other products, and therefore there will always
be uncertainty as to whether the probabilities assigned for a new product
are appropriate.

Application of Bayes' Theorem in artificial
intelligence and bioinformatics

As seen from this example, Bayes’ Theorem allows reasoning on possible
causes after receiving the data. Another way to put this is to say that
Bayes’ Theorem, with a slight reinterpretation, allows reasoning of the
form:

P (cause|effect) = [P (effect|cause) × P (cause)]/P (effect).

Some of the earliest applications of Bayes’ Theorem in artificial intel-
ligence were in fact in the medical domain where knowledge of con-
ditional probabilities concerning causal relationships in medicine were
used to derive probabilities of diagnosis (e.g. Pathfinder (Heckerman and
Nathwani, 1992); see http://www-users.cs.york.ac.uk/∼sara/reference/
bayesnets/Software/bnprojects.html for more details of other projects).
Bayes’ Theorem has found several other applications in artificial intelli-
gence and a good source of material on Bayes’ Theorem and such appli-
cations, including in the medical domain, can be found at http://www.
aaai.org/AITopics/html/uncert.html. Applications in bioinformatics are

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

116 PROBABILISTIC APPROACHES

more scarce, but a good reference source is http://zlab.bu.edu/kasif/
bayes-net.html, where several links to work on Bayesian networks in
computational molecular biology and bioinformatics can be found, in-
cluding references to recent papers on Bayesian approaches to gene ex-
pression analysis and biological data integration. Most of this work has
appeared in the last four or five years, suggesting a reawakening of in-
terest among bioinformaticians in the application of Bayesian reasoning
to a number of problem areas.

4.4 Markov networks

The Bayesian examples introduced in the previous section dealt with
situations where it was important to identify the probability of hypothe-
ses given evidence. While Bayesian networks can be adapted to deal
with probabilistic sequences, another formalism needs to be found if
such sequences are to be modelled with networks that have loops, given
the exponential aspect of calculating Bayesian conditional probabilities.
Markov networks are generally considered more appropriate for deal-
ing with sequences and loops. For example, consider the probabilistic
Markov network in Figure 4.4 and associated probabilistic transition
matrix in Table 4.1.

In addition to the normal probabilistic state transitions probabili-
ties can also be attached to the start state of the network (in square

S1

0.5 0.7

0.8

0.2

S2

S3

0.5

0.3

a = 0.05
b = 0.15
c = 0.8

a = 0.9
b = 0.05
c = 0.05

a = 0.1
b = 0.8
c = 0.1

Figure 4.4 A simple probabilistic network, with the transition probabilities spec-
ified in the probabilistic transition matrix in Table 4.1 (the probabili-
ties within rectangles represent the probabilities of producing symbols
within each state)

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

MARKOV NETWORKS 117

Table 4.1 A probabilistic transition matrix for the Markov
graph in Figure 4.4. The rows specify the probability of mov-
ing from one state to another, including loops (note that the
transition probabilities for each row sum to 1; additionally,
the start probability of each state (given in square parentheses)
can be specified to initialize the Markov process)

S1 S2 S3

S1 [0.9] 0 0.5 0.5
S2 [0.05] 0.3 0.0 0.7
S3 [0.05] 0 0.8 0.2

parentheses in Table 4.1). A sequence of states, such as S1, S2, S1, S3,
S3, S2, S1 can now be given a probability, as follows: P(S1, S2, S1, S3, S3,
S2, S1) = P(S1 × S2 | S1 × S1 | S2 ×S3 | S2 × S3 | S3 × S2 | S3 × S1 | S2) =
0.9 × 0.5 ×0.3 × 0.5 × 0.2 × 0.8 × 0.3 = 0.00324. That is, given that
the start of the sequence has probability 0.9, the probability of this par-
ticular sequence of states is the product of the transition probabilities of
moving from state to state, as given in Table 4.1.

If one symbol is attached to each state (that is, the Markov model
produces one specified symbol every time it enters a state), such as ‘a’
for S1, ‘b’ for S2 and ‘c’ for S3, then the sequence S1, S2, S1, S3, S3, S2,
S1 produces the symbol sequence ‘a b a c c b a’, again with probability
0.00324, using just the transition probabilities in Table 4.1. When only
one symbol is used instead of a state, the probabilities attached to these
symbols, and hence the probabilities attached to the transitions between
states, can reflect previous occurrences of these symbols next to each
other or the desirability of producing symbols probabilistically.

For instance, the transition probability ‘S2 | S1’, when translated into
a symbolic representation such as ‘b|a’, reflects the probability 0.5 of ‘b’
following ‘a’, as observed by examining actual sequences, or as desired
output. In other words, the probabilities attached to moving from S1
to S2 and S1 to S3 (0.5 and 0.5, respectively) reflect the probability of
‘a’ being followed by ‘b’ (probability 0.5) and by ‘c’ (0.5), respectively.
However, this restricts states to produce only one symbol. More flexibility
and power can be added to a Markov model if more than one symbol
is associated with a state. That is, each state may itself have a table of
symbols that are probabilistically produced in that state.

For instance, in Figure 4.4 each state is augmented by a table that
describes the probabilities of producing one of three symbols in that
state. So, the sequence ‘a b a c c b a’ (state sequence S1, S2, S1, S3, S3,

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

118 PROBABILISTIC APPROACHES

S2, S1), which has probability of 0.00324 if only one symbol is produced
in each state, has actual probability 0.9 × 0.9 × 0.5 × 0.8 × 0.3 × 0.9 ×
0.5 × 0.8 × 0.2 × 0.8 × 0.8 × 0.8 × 0.3 × 0.9 = 0.00009675, where
figures in bold give the probability of a particular symbol being produced
in a specific state.

In many cases the interest is only in the symbol sequence and the prob-
ability of that symbol sequence being generated, without there being a
need to know the states passed through. When the states are ‘hidden’,
in that the symbol sequence and its probability are all that is required, a
simple form of a ‘hidden Markov model’ (HMM) results. More formally,
an HMM is described as M = (α, β, π), where α is a table of transition
probabilities between nodes (for example, the entries in Table 4.1), β is
a table of observation or production probabilities concerning the occur-
rence of symbols (as given in the tables next to each node in Figure 4.4),
and π is a set of initial probabilities (as given in square parentheses in
Table 4.1). Just as with automata, an HMM is described as a ‘production
model’ or an ‘acceptance model’. A production model will generate a se-
quence of symbols with a probability as determined by the probability of
producing a symbol in a specific state and the probability of moving from
one state to another. The overall probability of a sequence is the product
of all symbol production/observation probabilities and state transitions.

Such models, in addition to being used for determining the probability
of a sequence being accepted or produced, can also be used for learning.
That is, given a number of sequences for which there is no HMM, the
task is to determine an HMM with an appropriate number of states,
transition probabilities and symbol occurrence probabilities that best fits
all the sequences. A typical problem in bioinformatics may consist of
trying to identify the HMM that best fits the four short DNA sequences:
AGTC, CAGC, TGC and AGC (note that the sequences need not be
the same length). A more powerful Markov model than the simple one
described above is required to handle this problem.

HMMs were originally developed in the speech processing domain but
were adapted for use in sequence analysis by computer scientists and com-
putational biologists (e.g. Karplus et al., 1997; Eddy, 1998). An HMM in
biosequence analysis is trained on a set of sequences so that it identifies
a prototype sequence structure that captures the common elements of
the set of sequences. Because looping is allowed, an HMM can be de-
scribed as a finite model that provides a probability distribution over an
infinite number of possible sequences. In bioinformatics, an HMM con-
sists of three primitives: match states, insert states and delete states. The
match states form the common, prototypical structure, while the insert
and delete states permit variations from the prototypical structure. The

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

MARKOV NETWORKS 119

Table 4.2 An initial alignment of the four sequences AGTC,
CAGC, TGC and AGC, with gaps inserted to form a consensus
consisting of AGC (columns 2, 3 and 5), for the construction
of a simple HMM

- A G T C
C A G - C
T - G - C
- A G - C

three primitives can only be connected to each other in three ways. A
match state Mi is connected to insert state Ii , delete state Di+1 and match
state Mi+1. An insert state Ii is connected to itself, delete state Di+1 and
match state Mi+1. A delete state Di is always connected to insert state Ii ,
delete state Di+1 and match state M i+1.1 A simple HMM for the four
sequences above can now be constructed.

First, assume that the four sequences have been initially aligned
(Table 4.2). The alignment results in a consensus sequence ‘AGC’
(columns 2, 3 and 5). One heuristic in building an HMM from scratch is
to start with as many match states as there are symbols in the consensus
sequence, which in this case is three. Another heuristic is to calculate
the average length of the training sequences and to start with as many
match states. In the example here, the length of the consensus sequence
is used and therefore three match states are chosen. Once the consen-
sus sequence AGC has been found, the empty HMM can be constructed
consisting of three match (M) states (one for each symbol of the con-
sensus), four insert (I) states and three delete (D) states (Figure 4.5(a)),
following the rules for structuring HMMs. The consensus symbols can
then be inserted into each match state. The first sequence AGTC is then
entered (Figure 4.5(b)). The path followed by AGTC is given by thick
arrows, with the symbols inserted into the appropriate states. After ‘be-
gin’, A is matched against M1, G is matched against M2, and T, since it
cannot be matched against M3, requires a transition to I2, followed by
a match of C against M3. The second sequence CAGC is then entered
(Figure 4.5(c)). Since the first symbol C cannot be matched against M1,
a transition to I0 is required, followed by three matches of A, G and C
against M1, M2 and M3, respectively. A note is kept of the transitions

1 This definition of HMMs is taken from the topology used in SAM, the Sequence Alignment
and Modelling program suite for the construction of HMMs developed at UCSC (Hughey and
Krogh, 1995). It differs slightly from the standard HMM definitions found in the literature
by allowing delete, match and insert states to form columns, rather than be staggered, as
required by the standard HMM definitions. SAM’s definitions are used here because of the
intuitive connection of columns in the HMM to columns of a multiple alignment.

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

120 PROBABILISTIC APPROACHES

(a)

(b)

(c)

D1

EndBegin

D2 D3

D1

EndBegin

D2 D3

D1

EndBegin

D2 D3

I0 I1 I2 I3

I0 I1 I2 I3

I0 I1 I2 I3

M1
A

M2 M3
G C

M1

A

A
M2 M3

G

TC

T

G

C

C

M1

A

A
M2 M3

G

G

C

C

Figure 4.5 The first part of the construction of an HMM for the four sequences
AGTC, CAGC, TGC and AGC

followed to calculate transition probabilities at the end of the process
(Figure 4.7).

The third sequence TGC is entered (Figure 4.6(a)). Since T does not
match M1, a transition to I0 is required to insert T. T now joins C (from
the second sequence) in I0. Since the next symbol is G and a transition to
I1 from I0 is not permitted, a transition to D1 to signify that the consensus

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

MARKOV NETWORKS 121

D1

M1 M2 M3 EndBegin

D2 D3

I0 I1 I2 I3

(a)

(b)
D1

M1

A

A
M2 M3 EndBegin

D2 D3

G

G

C

C

A

G

G

C

C

I0 I1 I2 I3

T

TTC

TC

Figure 4.6 The final stages of HMM construction

symbol A has been deleted is made and G is then matched to M2. C
is matched to M3. Finally, the fourth sequence AGC matches all three
match states Figure 4.6(b). The HMM construction is now complete,
with all occurrences of symbols observed. The final and full HMM is
given in Figure 4.7. After the final sequence is fed through the HMM,
the construction is complete and all probabilities are output together
with the HMM (Figure 4.7). At the top left of Figure 4.7 are the four
sequences, together with the possible multiple alignment that identifies
the consensus AGC. Below each match state M1, M2 and M3 in the
HMM are the consensus symbols (with high probability), with token
probabilities attached to other symbols not encountered as a consensus.
To the left are the insertion probabilities for each insert state. Since I0
is entered twice (for CAGC and TGC), C and T have probabilities close
to 0.5 (0.45), with token probabilities attached to the other symbols
(X signifies any other symbol). T has a high probability in I2 to signify
it was inserted in at least one sequence. At the bottom of the figure
are the paths traced by each sequence. Links not used for modelling
any sequence are given in dashed lines, while solid lines indicate that a

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

122 PROBABILISTIC APPROACHES

D1

M1 M2 M3 EndBegin

Match
profiles:

Insertion profiles:

Note that ‘X’ stands for any of the letters

One possible multiple alignment:

D2 D3

I0 I1 I2 I3

A 0.97
C 0.01
G 0.01
T 0.01

A 0.01
C 0.01
G 0.97
T 0.01

A 0.01
C 0.97
G 0.01
T 0.01

I0 C 0.45 T 0.45 X 0.1
I1 X 0.01
I2 T 0.9 X 0.1
I3 X 0.01

Begin – I0:0.5
Begin – M1:0.5
I0 – D1:0.5
I0 – M1:0.5
D0 – M2:1.0
M1 – M2:1.0
M2 – I2:0.25
M2 – M3:0.75
I2 – M3:1.0
M3 – End:1.0

Trace:

Sequences:
 AGTC
 CAGC
 TGC
 AGC

Transition probabilities:

AGTC Begin – M1 – M2 – I2 – M3 – End
CAGC Begin – I0 – M1 – M2 – M3 – End
TGC Begin – I0 – D1 – M2 – M3 – End
AGC Begin – M1 – M2 – M3 – End

– A G T C
C A G – C
T – G – C
– A G – C

 A G C consensus

Figure 4.7 The complete HMM

particular link was used. To the right below the HMM are the transition
probabilities, calculated on the basis of how often that link was followed
for the four sequences. For instance, the link between ‘begin’ and I0 has
a 0.5 transition probability because this link was followed for two of the
four sequences. Also, the links between I0 and D1 and I0 and M1 have
0.5 transition probability each because, of the two sequences that entered
I0, one exited to D1 and the other to M1. Some links have probability 1
to signify that all the sequences that entered that state also exited by that
link. The links between M2 and I2 and M2 and M3 have 0.25 and 0.75

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

MARKOV NETWORKS 123

probability to reflect that three of the strands exited to M3 and only one
to I2. Delete states have 0 probability since they do not emit any symbols.

This HMM is then said to ‘model’ the four sequences, and the proba-
bilities of each sequence can now be determined as the product of all the
probabilities along its path. For instance, for AGTC:

AGTC = 0.5 × 0.97 × 1.0 × 0.97 × 0.25 × 0.9 × 1.0 × 0.97 × 1.0

= 0.102676

That is, from left to right, 0.5 represents the link between ‘begin’ and
M1, 0.97 the probability of matching A in M1, 1.0 the link between M1
and M2, 0.97 the match between G and M2, 0.25 is the link between
M2 and I2, 0.9 the probability of inserting T in I2, 1.0 the link between
I2 and M3, 0.97 the match between C and M3, and finally 1.0 the link
between M3 and ‘end’.

One of the benefits of an HMM is that the model can be used to
generate other sequences not so far explicitly represented. For instance,
following only the links that have been activated when evaluating the
four previous sequences, the ‘new’ sequence CAGTC is also a sequence
of the model if the two insert states are both entered for a sequence:

CAGTC = 0.5 × 0.45 × 0.5 × 0.97 × 1.0 × 0.97 × 0.25 × 0.9

× 1.0 × 0.97 × 1.0 = 0.023103.

One of the problems with HMMs and any probabilistic approach that
uses products of probabilities is that resulting probabilities become in-
creasingly smaller with each link or state probability. For an HMM con-
sisting of 40 or 50 match states and associated insert and delete states
with links (that is, for an HMM that deals with sequences that are on
average 40 or 50 symbols long or whose consensus is between 40 and
50 symbols), the probabilities of sequences may become so small as to
become almost meaningless. Also, some computers may not be able to
calculate extremely small numbers with accuracy. For this reason log-
odds scoring is often used, whereby each sequence is considered as a
random collection of symbols, the null model. The null model can then
be used to assign a DNA sequence of length L a probability of 0.25L,
where each nucleotide has a 0.25 random chance of appearing (or 0.05L

if dealing with amino acid sequences). The log-odds score for a sequence
S can then be calculated as:

log
P(S)

0.25L
= log P(S) − L log 0.25

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

124 PROBABILISTIC APPROACHES

For instance, the logs-odd score for CAGTC is:

log
P(CAGTC)

0.25L
= log P(CAGTC) − L log 0.25

= log 0.023103 – (5 × log 0.25)

= −3.7677928 – (5 × −1.3862944)

= −3.7677928 + 6.93147181

= 3.16367901 (using natural logs)

That is, the HMM probability of CAGTC is 0.023103, and from this is
subtracted (with logs, dividing x by y becomes subtracting y from x) five
(the length of the sequence) times the random chance of the sequence
being random (with logs, raising to the power becomes multiplication).
The final result can be rounded to 3.164. The above calculation was
undertaken after the probability of CAGTC was calculated, but the log-
odds formula can be applied from the beginning of a sequence as it
enters the HMM so that a running natural log score can be maintained
as the symbols are processed one by one and insert, match and transition
probabilities are applied.

Three major advantages with HMMs are that conserved regions of
sequences (subsequences that occur in all strings, such as the same gene
across a number of different organisms, that can therefore be assumed
to be conserved through evolution) are modelled very well, that deletion
and insertion of nucleotides and amino acids are explicitly represented
in the HMM and that the actual states passed through by the HMM are
hidden from the user who may only be interested in the final probabil-
ities. This example assumed that sequences were already aligned before
presentation to the HMM. In fact, HMMs can also be used to construct
alignments, and methods such as the Viterbi algorithm (with variations)
exist for this purpose.

Applications of HMMs in bioinformatics

HMMs can be considered a true bioinformatics technique, with sev-
eral applications in profile family characterization in homology search,
gene finding (see Colin Cherry’s HMMs in Bioinformatics, http://www.
cs.ualberta.ca/∼colinc/cmput606/606FinalPres.ppt). One of the best
sources for further information is the ISMB99 Tutorial on HMMs by
Melissa Kline, Christian Barrett and Kevin Karplus (http://www.

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

SUMMARY OF CHAPTER 125

cse.ucsc.edu/research/compbio/ismb99.tutorial.html). This page also
contains links to other HMM-related pages.

4.5 Summary of chapter

1 Probability is playing an increasingly important role in artificial in-
telligence and the ability of systems to reason under conditions of
uncertainty. Of particular importance and interest are Bayesian and
Hidden Markov Model approaches, which have the ability to calcu-
late the probability of future events and sequences on the basis of past
events and sequences. Both approaches use special types of graph for
representing information about the domain.

2 At the heart of the Bayesian approach is the concept of ‘conditional
probability’, i.e. the probability of a prior event A having occurred
given that a subsequent event B has occurred. If there is a hypothetical
causal relationship between A and B, and B is seen to occur but not A,
Bayes’ Theorem can be used to calculate the probability of A having
occurred.

3 The specific hypothetical relationship between A and B above can
be generalized to any causal sequences A, B, C, etc. In this case we
may have multiple possible causes of particular events and long se-
quences of causal events. Bayesian networks are special types of graph
that allow the calculation of prior events in a multiple causal system,
but problems exist concerning the tractability of such networks if
the graph becomes complex. Nevertheless, Bayesian approaches are
suitable for AI and Bioinformatics applications where it is important
to reason about the probability of events.

4 Hidden Markov Models (HMMs) can be described formally as a
discrete dynamical system governed by a Markov chain that emits
a sequence of observable outputs. They are useful for dealing with
sequences. A typical HMM consists of three ‘layers’ of nodes with
specific interconnectivity. Typically, the first layer consists of ‘match’
states that reflect the frequency of commonly occurring symbols in
a set of observed sequences, another layer reflects the frequency of new
symbols being inserted in specific positions in some of the observed
sequences, and the third layer represents the frequency of symbols
being deleted from some of the observed sequences.

JWBK023-04 JWBK023-Keedwell March 24, 2005 12:57 Char Count= 0

126 PROBABILISTIC APPROACHES

5 HMMs are particulary useful for dealing with multiple alignments,
profiles and various probabilistic models of biological sequences. A
number of algorithms now exist for constructing HMMs for optimal
multiple alignment. There are typically two phases to constructing
an HMM. In the first phase the task is to find a set of transition
and emission probabilities that reflect the probability of observing
the training sequences. In the second phase the task is to determine
the probability that a new sequence belongs to the domain being
modelled by the HMM.

4.6 References

Delcher, A., Kasif, S. Goldberg, H. et al. (1993) Protein secondary-structure modeling
with probabilistic networks. International Conference on Intelligent Systems and
Molecular Biology, pp. 109–117.

Eddy, S.R. (1998) Profile hidden Markov models. Bioinformatics 14 (9), 755–763.
Heckerman, D.E. and Nathwani, B.N, (1992) An evaluation of the diagnostic accu-

racy of Pathfinder. Comput. Biomed. Res., 25 (1), 56–74.
Hughey, R. and Krogh, A. (1995) SAM: Sequence alignment and modelling software

system. Technical Report UCSC-CRL-95-7, University of California, Santa Cruz,
CA, January 1995 (regularly updated).

Karplus, K., Sjolander, K., Barrett, C. et al. (1997) Predicting protein structure using
hidden Markov models. Proteins, Supplement 1, 134–139.

Software availability

A good starting point for downloading software for Bayesian reasoning
is http://www.ai.mit.edu/∼murphyk/Bayes/bnsoft.html, where a num-
ber of graphical packages for Bayesian networks are described and
compared. The standard HMM software used by bioinformaticians is
HMMER (pronounced ‘hammer’), from http://hmmer.wustl.edu/. It is
written mainly for Unix and Linux platforms, although a Windows ver-
sion does exist if changes are made to the code.

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

5
Nearest Neighbour and
Clustering Approaches

5.1 Introduction

Consider eight prostate cancer patients who have had biopsies in a clinic,
with measurement of two specific genes through gene expression analy-
sis: hepatoma mRNA for the serine protease hepsin (accession number
X07732) and the c-myc oncogene (V00568). Doctors at the clinic believe
they have a novel way of identifying more accurate therapeutic strategies
for individual patients based on these gene expression measurements.
Each of the patients then undergoes an individualized therapy regime
consisting of varying combinations of androgen suppression and radi-
ation. These therapeutic strategies prove successful, thereby vindicating
therapeutic diagnosis on the basis of the measurement of these two genes.
A new patient enters the clinic and also has a biopsy. The question now
arises as to whether, from previous records of successful therapy, the
doctors can predict the sort of therapy that stands most chance of being
successful for the new patient, given his gene expression measurements
for X07732 and V00568.1

A nearest-neighbour approach to this diagnosis problem would be as
follows. The quantitative measurements for these two genes are con-
verted to log2 ratios, ranging from 0 to 6. Each of the eight previous
patients is plotted on a two-dimensional graph so that their measure-
ments on these two genes act as x and y coordinates to project each

1 This example is an adaptation of an example provided by Winston (1992).

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd

127

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

128 NEAREST NEIGHBOUR AND CLUSTERING APPROACHES

6

(a)

p5 p7

p6

p8

p4

p2p1

p3

New patient

V
0

0
5

6
8

log ratios

5

4

3

2

1

X07732
654321

0

?

?

6

(b)

p5

p7

p6

p8

p4

p2p1

p3

Mid-point = 3.5

Neutral zone

First
division

V
0

0
5

6
8

5

4

3

2

1

X07732
654321

0

Figure 5.1 The method for constructing a decision tree.

patient’s profile onto a two-dimensional space (Figure 5.1(a)). For in-
stance, patient 1 (p1) has value 6 on V00568 and value 2 on X07732.
The question of how doctors treat the new patient now becomes the
question of locating the new patient as close as possible to his neighbour
in this two-dimensional space, given the new patient’s measurements on
the two genes. In other words, the doctors ask who the nearest neigh-
bour of the new patient is. If the doctors can determine who the nearest
neighbour is, then they can administer the same therapeutic regime to
the new patient as the new patient’s nearest neighbour, with the expecta-
tion that the therapy stands a better chance of being successful according
to previous experience than if they were to come up with a therapeutic
regime from scratch.

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

6

(c)

p5
p7

p6

p8

p4
p2p1

p3

Mid-point (a) = 3.5

Mid-point (b) = 3.0

Second division (b)

Second
division (a)

V
0

0
5

6
8

5

4

3

2

1

X07732
654321

0

6
(d)

p5

p7

p6

p8

p4

p2p1

p3

Third
division (a)

(Mid-point = 5.5)

Third
division (b)

(Mid-point = 1.5)

V
0

0
5

6
8

5

4

3

2

1

X07732
654321

0

(e)
V00568 > 3.5?

Decision tree generated from
mid-points:

New patient is closest
to p3

No

No

NoNo

Yes

Yes

YesYes

X07732 > 3.0? X07732 > 3.5?

V00568 > 5.5?V00568 > 5.5?V00568 > 1.5?V00568 > 1.5?

p7 p1

No Yes

p8 p6

No Yes

p3 p1

No Yes

p4 p2

Figure 5.1 (continued)

129

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

130 NEAREST NEIGHBOUR AND CLUSTERING APPROACHES

5.2 Nearest neighbour method

The basis for all nearest neighbour methods is the consistency heuristic
(Friedman, Bentley and Raphael, 1977; Dasarathy, 1991): (a) find the
most similar case, as measured by known properties, for the new case
with unknown property (in this case unknown therapeutic regime);
(b) then guess that the unknown property of the new case is the same as
the property of the most similar case. Nearest neighbour calculations can
be performed at run-time, but there are advantages in storing the infor-
mation on how to determine a nearest neighbour ahead of new samples
so that, as new cases enter the system, they can immediately be located
nearest to their most similar neighbour. It may seem trivial to under-
take a nearest neighbour calculation for this simple example. After all, a
simple visual inspection seems to indicate that the new patient’s nearest
neighbour is p3 or possibly p5. However, imagine that not two genes
are measured but 50. There will be a 50-dimensional space that needs
examining and visual inspection will no longer be sufficient. The nearest
neighbour method provides a systematic method for locating new cases
as close as possible to existing cases, irrespective of the number of dimen-
sions, thereby adding some consistency to the decision-making process.

The nearest neighbour method can be described generally as follows.
For the cases with known therapeutic strategies, generate a decision tree
(Figure 5.1) where each node is connected to a set of possible answers
and each non-leaf node is connected to a test which splits its set of pos-
sible answers into subsets corresponding to different test results. Each
branch will then carry a particular test result’s subset to another node.
Informally, the idea is to divide up the cases in advance of nearest neigh-
bour calculation so that each patient falls within their own unique space.
The two attributes X07732 and V00568 (measurements known for all
eight patients plus the new patient) are used repeatedly until only one
patient is in each set. The cases are divided in such a way that an equal
number of cases falls on either side. The eight cases are first projected
onto a two-dimensional space using the attributes (Figure 5.1(a)). The
steps are as follows.

1 Use V00568 first and find a point on that dimension that separates
the eight cases with a known property (therapeutic strategy) into two
equal subsets of four (Figure 5.1(b)). Note that p3 and p4 have value
5 on V00568, whereas p5 and p6 have value 2 on this dimension.
The space between these four patients is the separation between the

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

NEAREST NEIGHBOUR METHOD 131

top half of the group and the bottom half of the group (four patients
in each subgroup). If the average between 2 and 5 is taken the result,
3.5, can be used to determine the mid-point that separates the eight
cases into two equal subsets of four. The space between is called the
neutral zone. This is the first division.

2 Next, apply the second dimension, X07732, to each subset (Figure
5.1(c)).
(a) First ask, for the top group of four patients, what the X07732

mid-point value is that separates that group into two equal sub-
sets of two cases each. For the top group, p1, p2, p3 and p4,
the X07732 mid-point value that separates p1 and p3 from p2
and p4 is 3.5, since p1 and p3 have X07732 value two and p2
(the closer case among p2 and p4) has value five. This is the first
division for X07732.

(b) Also, determine the mid-point value for the lower group. The two
cases that are closest to each other are p7 and p6 in this group
of four and constitute the second and third items, in increasing
X07732 value. The mid-point between them is 3. That is where
the second division for X07732 takes place.

3 There are now four groups of two cases each. Go back to V00568 to
identify a final set of divisions that will uniquely locate each sample
into one of eight regions of space (Figure 5.1(d)).
(a) For the top left group of two (p1, p3), the mid-point is 5.5 (av-

erage between 5 and 6). Each case now falls in its own distinct
region and no further division is required.

(b) For the top right group (p2, p4), the mid-point is also 5.5. Each
case now falls in its own distinct region and no further division
is required.

(c) For the bottom left group (p5, p7), the mid-point is 1.5, and no
further division is required.

(d) For the bottom right group (p6, p8), the mid-point is also 1.5,
and no further division is required.

The first phase of the nearest neighbour method is complete. The sec-
ond and final stage is to generate a decision tree that reflects the order
in which the attributes were applied and the mid-points found (Figure
5.1(e)). The first mid-point is used to root the tree. A ‘yes’ branch and ‘no’
branch lead to the second set of tests at the level below. Since there are
two mid-points here, they both form separate tests at that level. Finally,

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

132 NEAREST NEIGHBOUR AND CLUSTERING APPROACHES

place all four mid-point tests at the level below so that, by following the
tree and applying the tests, each of the eight cases uniquely falls in a leaf
node by itself. To determine the nearest neighbour of the new case, simply
apply the root test and follow the appropriate branches to subsequent
tests, and so on, until a leaf node is reached, where the most similar case
will be found. In this example the nearest neighbour method predicts
that the best therapeutic strategy for the new patient is the same as that
followed by p3.

Typically, nearest neighbour methods do not return just one candidate
nearest neighbour but k nearest neighbours, where k is determined by the
user. Each of the k nearest neighbours can vote on their confidence as to
whether it is the nearest neighbour by calculating some distance metric
between itself and the new case. The regions of space around each sample
(the neutral zones) can be used for this purpose, since it is possible that
a new case falls just one side of a mid-point but is closer in distance to
a sample in a bordering region than it is to the sample in the region of
space in which it falls.

In general, a decision tree with branching factor two and depth d
will have 2d leaves, where d will have to be large enough to ensure
2d ≥ n (where n is the number of samples or objects). Nearest neigh-
bour approaches are particularly useful for dealing with attributes that
are known to be ‘noisy’ or which have values that are often missing, since
the decision tree can project a more accurate value for such attributes
on the basis of comparing values on attributes that are known to be se-
cure for all samples. Also, the information as to why a new sample is
categorized with a nearest neighbour is readily available in the form of
a decision tree.

5.3 Nearest neighbour approach
for secondary structure protein
folding prediction

SIMPA (Levin, Robson and Garner, 1986; Levin, 1997) is an extended
nearest neighbour method for predicting the secondary structures of pro-
teins. Consider three short amino acid sequences and their known sec-
ondary structure conformations:

h h s s s s c h s c c c c c h h s s c c c
A T S L V F W S T S G V V W S C N G A F W

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

NEAREST NEIGHBOUR APPROACH 133

For example, the amino acid sequence ATSLVFW has secondary structure
hhssssc, where ‘h’ stands for ‘helix’, ‘s’ for sheet, and ‘c’ for coil. (SIMPA
uses several other secondary structure conformations.) That is, A and T
partake in a helix, S, L, V and F in a sheet and W in a coil. Now imagine
that a new, homologous amino acid sequence is encountered (homolo-
gous as given by some alignment algorithm) with unknown secondary
structure: STNGIYW. The question arises as to whether the secondary
structure of this new sequence can be predicted based on a knowledge of
the structure of its three homologues.

First, find or construct a similarity matrix, such as that provided in
Table 5.1. This table, which describes the similarity and dissimilarity re-
lationships between pairs of amino acids, is used to generate a conforma-
tion matrix by working through each sequence with known structure and
comparing its amino acid constituents with those of the sequence with un-
known structure. So, for example, the similarity between STNGIYW (the
sequence with unknown secondary structure) and ATSLVFW (the first of

Table 5.1 A hypothetical similarity matrix that identifies the relationships between
individual amino acids based on various properties, such as charge, aromaticity and
hydrophobicity (adapted from Levin et al. (1986)). For example, glycine (G) in the
second column of the table is neutral (0) with respect to proline (P, second row) and
negatively related to valine (V, thirteenth row) with value −1. Phenylalanine (F) in
the third column from the right is positively related to tyrosine (Y, row 19)

G 2
P 0 3
D 0 0 2
E 0 −1 1 2
A 0 −1 0 1 2
N 0 0 1 0 0 3
Q 0 0 0 1 0 1 2
S 0 0 0 0 1 0 0 2
T 0 0 0 0 0 0 0 0 2
K 0 0 0 0 0 1 0 0 0 2
R 0 0 0 0 0 0 0 0 0 1 2
H 0 0 0 0 0 0 0 0 0 0 0 2
V −1 −1 −1 −1 0 −1 −1 −1 0 −1 −1 −1 2
I −1 −1 −1 −1 0 −1 −1 −1 0 −1 −1 −1 1 2
M −1 −1 −1 −1 0 −1 −1 −1 0 −1 −1 −1 0 0 2
C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
L −1 −1 −1 −1 0 −1 −1 −1 0 −1 −1 −1 1 0 2 0 2
F −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 1 0 −1 0 2
Y −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 −1 0 1 2
W −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 −1 0 0 0 2

G P D E A N Q S T K R H V I M C L F Y W

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

134 NEAREST NEIGHBOUR AND CLUSTERING APPROACHES

Table 5.2 The conformation prediction table for the three homologues in compar-
ison with the sequence with unknown structure

h s c

Residue 1 6 + 9 + 9 = 24
Residue 2 6 + 9 = 15 9
Residue 3 6 + 9 = 15 9
Residue 4 6 + 9 = 15 9
Residue 5 6 9 + 9 = 18
Residue 6 6 9 + 9 = 18
Residue 7 6 + 9 + 9 = 24

the sequences with known secondary structure) is: 1 + 2 + 0 − 1 + 1 +
1 + 2 = 6. That is, the similarity between the first symbols of each strand
‘S’ and ‘A’ is 1, the second symbols ‘T’ and ‘T’ is 2, third symbols ‘N’ and
‘S’ is 0, fourth symbols ‘G’ and ‘L’ is −1, fifth symbols ‘I’ and ‘V’ is 1, sixth
symbols ‘Y’ and ‘F’ is 1, and final symbols ‘W’ and ‘W’ is 2. These pair-
wise similarity scores are added together to result in a score of 6 for these
two sequences. Calculate the scores for STNGIYW and the other two
homologues also, giving 9 for STSGVVW (2 + 2 + 0 + 2 + 1 + 0 + 2)
and 9(2 + 0 + 2 + 2 + 0 + 1 + 2) for SCNGAFW. There are three over-
all scores that measure the similarity between each of the homologues
and the sequence with unknown structure: 6, 9 and 9.

Next, allocate these scores in a conformation prediction table for each
residue (Table 5.2). The rows of this table describe each residue in the
homologue set (residues 1 to 7), and the rows represent the three types
of conformation possible (helix, sheet and coil).

For residue 1, all three homologues have the h conformation for their
first residue, and so each of the overall homologue scores are entered and
summed in this column: 6+9+9. For the second residue, the first and the
third of the homologues have h whereas the second homologue has c. The
scores for the first and third homologues are inserted under the h column
(6 and 9, respectively) and the score for the second homologue is inserted
under the c column (9). For the third residue, the first and third sequences
have conformation s whereas the second has c. The overall scores 6 (for
the first homologue) and 9 (for the third homologue) are added under
the s column whereas the overall score 9 (for the second homologue) is
entered under the c column. This process is continued for all the residues
(Table 5.2). Then, for each residue in the new strand STNGIYW, the
conformation with the maximum score is allocated to that residue. For
instance, the first symbol in the new strand is ‘S’. Looking at the first

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

CLUSTERING 135

residue row of Table 5.2, the maximum (and only) score falls under the
h column. The first residue of the new strand is therefore predicted to
partake in a helix conformation. For the second residue, there are two
possibilities, with 15 for h and 9 for c. Since the maximum value is 15, the
second residue is predicted to partake in a helix conformation. Applying
this maximum function to all the other residues results in a prediction
that the new strand STNGIYW has conformation hhssccc, i.e. helix,
helix, sheet, sheet, coil, coil coil, for its seven amino acid residues.

SIMPA (Levin, 1997) uses a more complex version of this method,
adopting a threshold value (minimum score) of 7 before a score can
be inserted into the conformation prediction table, a ‘moving window’
moving one residue along both the new and homologue strands, and
additional weightings on the scores in the secondary structure similarity
matrix. SIMPA is an extended nearest neighbour technique since it es-
sentially attributes a conformation to a residue in the new sample on the
basis of nearest neighbour residues with known conformations in homo-
logues. The conformation here is a class, and SIMPA is a procedure that
predicts a class c (a conformation in this case) on the basis of the nearest
neighbours n (residues in homologues) to a query object q (residues in
the new strand).

5.4 Clustering

Nearest neighbour approaches generally work well when there are a few
attributes and many samples. The small number of attributes can be used
one at a time, in no specific order, to generate a multidimensional space
onto which each sample can be projected as a point. If, after one cy-
cle through the small number of attributes, it is not possible to locate
each sample in its own unique space, the attributes can be reused over
and over until each sample is uniquely located. However, many prob-
lems in bioinformatics are characterized by a few samples having very
many attributes. For instance, a family of proteins may consists of about
20 actual sequences (samples), each of which can contain very many,
possibly hundreds or thousands, of residues (attributes called ‘residue 1’,
‘residue 2’, etc.). If the attributes are binary (e.g. ‘yes/no’, ‘on/off’) and
the number of attributes a is such that 2a < n, where n is the number of
samples, attributes can be reused (as in Figure 5.1) until a unique sample
at each leaf of the decision tree results. However, if there are many more
attributes than samples, the problem arises of deciding which attributes
to use, since not all of them will need to be used to generate the decision

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

136 NEAREST NEIGHBOUR AND CLUSTERING APPROACHES

Table 5.3 A table of four patients with their gene expression mea-
surements across five genes. The gene values are ‘absent’ and ‘present’,
which are coded in the table as ‘0’ for ‘absent’ and ‘1’ for present.
Patients 1 to 4 are referred to as p1–p4 in the text

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Patient 1 1 1 0 0 0
Patient 2 1 0 0 0 0
Patient 3 0 0 1 0 0
Patient 4 0 0 1 1 0

tree. This then means that there will be different decision trees depending
on which attributes are used. Also, there is the possibility that by arbi-
trarily choosing some attributes rather than others certain attributes are
missed that lead to clear and separate regions of space for each sample.
For instance, ‘noisy’ attributes may be used that do not distinguish the
sample well and instead project the samples into a very tight region of
space where clear separation is not maintained. For this reason, meth-
ods which attempt to take into account the information present in all
attributes before projecting each sample into its own region of space are
preferred for many bioinformatics problems.

Consider, for instance, four cancer patients p1 to p4 who are mea-
sured across five genes (Table 5.3) that are measured in binary form (e.g.
‘gene absent’ and ‘gene present’). To project each patient into a separate
region of space would require only two of the five genes/attributes to
be used – but which ones? For instance, if Gene 1 is used, that will separate
the four patients into two subgroups of two each (p1 and p2 on the one
hand, and p3 and p4 on the other), but if Gene 2 is used there will be un-
equal distribution. Clustering removes the need to make such a decision
by using the information present in all five genes in an iterative process.

The first iteration in clustering (Figure 5.2) involves calculating a
matching coefficient for every pair of patients in the table across all
genes/attributes. For instance, the matching coefficient for p1 and p2
is the number of identical gene expression values they share divided by
the total number of genes/attributes. Patient 1 and Patient 2 share iden-
tical gene expression values for Gene 1 (this gene is present (1) for both
patients), Gene 3 (0), Gene 4 (0) and Gene 5 (0). Therefore, out of five
genes, Patient 1 and Patient 2 share four identical values. If score 1 is
used for each perfect match and 0 for each mismatch, this produces:

p1/p2 = 1 + 0 + 1 + 1 + 1 = 4/5 = 0.8.

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

CLUSTERING 137

0.4

0.6

0.8

Similarity

(p1/p2)/(p3/p4)

p1/p2

p1 p2 p3 p4

p3/p4

Third iteration:
(p1/p2)/(p3/p4)=0.4

Second iteration:
 (p1/p2)/p3=0.5
 (p1/p2)/p4=0.3
 p3/p4=0.8

 p3/p4 chosen
 to form second
 cluster

First iteration:
p1/p2=0.8
p1/p3=0.4
p1/p4=0.2
p2/p3=0.6
p2/p4=0.4
p3/p4=0.8

p1/p2 chosen to
form first cluster

Figure 5.2 A cluster diagram that represents the similarities between four patients
p1–p4 as measured on five genes

where ‘p1/p2’ means that p1 is matched with p2. Similarly:

p1/p3 = 0 + 0 + 0 + 1 + 1 = 2/5 = 0.4;

p1/p4 = 0 + 0 + 0 + 0 + 1 = 1/5 = 0.2;

p2/p3 = 0 + 1 + 0 + 1 + 1 = 3/5 = 0.6;

p2/p4 = 0 + 1 + 0 + 0 + 1 = 2/5 = 0.4;

p3/p4 = 1 + 1 + 1 + 0 + 1 = 4/5 = 0.8.

There are six pairwise comparisons to be made for four patients in the
first iteration. In general, if there are n patients or samples, there will be
an initial n − 1 + n − 2 + n − 3 + . . . 2 + 1 comparisons.

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

138 NEAREST NEIGHBOUR AND CLUSTERING APPROACHES

The next stage is to choose the match that has the highest matching co-
efficient. In this example, there are two values of 0.8 (p1/p2 and p3/p4).
Choose one at random, say p1/p2, and form the first cluster. The calcula-
tion of all pairwise matching coefficients is repeated, but this time using
p1/p2 as one ‘patient’ and taking partial matches into account. So, the
average matching coefficient for p1/p2 and p3 = 0 + 0.5 + 0 + 1 + 1 =
2.5/5 = 0.5. That is, there is no match (0 score) for Gene 1, since both
p1 and p2 have value 1 for this gene whereas p3 has 0; there is a par-
tial match between p1/p2 and p3 for Gene 2, since p2 has value 0 and
p3 has value 0, and this partial match is given a score of 0.5 to indi-
cate that one half of p1/p2 shares a value with p3; there is no match
between p1/p2 and p3 for Gene 3 (0 value); there is a total match be-
tween p1/p2 and p3 for Genes 4 and 5 (score 1 each), giving 2.5 shared
values out of five genes, which is 0.5 Similarly, the matching coefficients
for p1/p2 and p4 = 0 + 0.5 + 0 + 0 + 1 = 1.5/5 = 0.3, and for p3 and
p4(p3/p4) = 0.8 (as before). Since p3/p4 has the highest coefficient value
in the second iteration, they form the second cluster.

The third and final iteration for this example consists of matching
the two clusters p1/p2 and p3/p4 together (that is p1/p2 is considered
one ‘patient’, as is p3/p4), with partial matches taken into account.
The matching coefficient for (p1/p2)/(p3/p4) = 0 + 0.5 + 0 + 0.5 + 1 =
2/5 = 0.4. That is, p1/p2 has no match whatsoever with p3/p4 for Gene
1 (therefore 0 score); for Gene 2 half of p1/p2, namely, p2, shares a
feature (0) with p3/p4 (which both share the same feature 0), thereby
resulting in 0.5 score; there is no partial match whatsoever on Gene 3
(score 0); half partial match for Gene 4 (0.5 score), and total match on
Gene 5 (score 1). This results in an overall matching coefficient of 0.4
for (p1/p2)/(p3/p4).

Since all the individual patients have been combined into one super-
cluster, the iterative process is complete. A similarity tree is now generated
that reflects the order in which the patients were clustered (Figure 5.2)
with an indication of the matching coefficient values for each clustering.
This form of hierarchical clustering is known as UPGMA (unweighted
pair group method with arithmetic mean) (Michener and Sokal, 1957;
Sneath and Sokal, 1973).

5.5 Advanced clustering techniques

So far, only samples in Table 5.3 were clustered. However, genes can also
be clustered. Imagine an extended version of the data in Table 5.3, but
with the difference that each gene now has one of four possible values

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

ADVANCED CLUSTERING TECHNIQUES 139

Table 5.4 A gene expression sample table, with genes
occupying rows and samples columns

Patient 1 Patient 2 Patient 3 Patient 4

Gene 1 3 2 1 0
Gene 2 2 1 0 1
Gene 3 3 1 0 2
Gene 4 1 0 1 0
Gene 5 0 0 3 3

(0, 1, 2, 3). First, the table is transposed so that genes appear in the rows
and samples in the columns (Table 5.4).

The gene profiles can be plotted on a graph, as given in Figure 5.3.
That is, each line on the graph connects a gene’s values across all patients.
The next stage is to identify how similar each gene is to other genes, given
the profiles across all samples.

A Euclidean distance approach to this calculation is as follows:

d(g, g′) =
√∑

s
(egs − eg′s)2

That is, the difference between two genes g and g′ is the square root of the
summed squares of the differences between an expression value e of g for
a sample s and the expression value e of g′ for that same sample summed

3

2

1

1 2 3 4

G
en

es

Samples

Gene 5

Gene 1

Gene 3

Gene 2

Gene 4

Figure 5.3 Gene expression profiles plotted on a graph

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

140 NEAREST NEIGHBOUR AND CLUSTERING APPROACHES

across all samples. The difference is squared to prevent negative values.
So, for instance, for the five genes and adopting a pairwise comparison
in the first instance:

d(g1, g2)=
√∑

(egs − eg′s)2 =
√

(3 − 2)2 + (2 − 1)2 + (1 − 0)2 + (0 − 1)2

=
√

1 + 1 + 1 + 1 = 2

That is, Gene 1 has values 3, 2, 1 and 0 across the four samples (patients)
and Gene 2 has values 2, 1, 0 and 1 for the same four samples. Gene 1
values constitute the first item of each pair of values in the formula,
and gene 2 values constitute the second item of each pair. Adopting the
Euclidean method, the two genes have a similarity measure of 2 (the closer
the similarity measure to 0, the more similar two genes are). The other
pairwise comparisons result in:

d(g1, g2) = 2 d(g1, g3) = 2.45 d(g1, g4) = 2.83 d(g1, g5) = 5.1
d(g2, g3) = 1.414 d(g2, g4) = 2 d(g2, g5) = 4
d(g3, g4) = 3.162 d(g3, g5) = 4.472
d(g4, g5) = 3.742

A second approach to calculating the differences between pairs of genes
is the Manhattan approach, defined as follows:

d(g, g′) =
∑

s

|egs − eg′s |

That is, the difference between a pair of genes is simply the absolute
difference between the expression values across all samples. So, for ex-
ample,

d(g1, g2) = |3 − 2| + |2 − 1| + |1 − 0| + |0 − 1| = 4

d(g1, g3) = |3 − 3| + |2 − 1| + |1 − 0| + |0 − 2| = 4

etc. The Euclidean distance method is adopted here since, as can be
seen by comparing g1, g2 and g3 above, the Euclidean distance method
can make finer distinctions than the Manhattan method. That is, the
Euclidean distance method separates g1 and g2 from g1 and g3 (2 and
2.45, respectively), whereas the Manhattan method gives the same values
for each pair (4).

Once the pairwise distance calculations have been made, start merging
the genes with closest distance to each other. There are a number of

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

ADVANCED CLUSTERING TECHNIQUES 141

methods for doing this in the literature, but one of the simplest will be
used here. Looking at the results of the Euclidean distance calculations
for pairs of genes above, there is one pair (g2, g3) that is most similar
(distance 1.4 between the items of the pair). Merge g2 with g3 to form
the first cluster. Combine these two genes into a ‘protogene’ by listing
the pairs of sample points (by, for instance, taking the average of each
pair of sample points), and then recalculate all pairwise comparisons for
the remaining genes, and so on, until all the genes are clustered. So, for
instance, the average for the protogene of g2 and g3 would be (2.5, 1, 0,
1.5), which is the average between the pairs of points ((2,3), (1,1), (0,0),
(1,2)). For the second iteration:

d(g1, g5) = 5.1 d(g4, g5) = 3.742

d(g1, g4) = 2.83

These are the same as before. Comparing g1, g4 and g5 with the new
protogene gives:

d(g1, g2,3) =
√

(3 − 2.5)2 + (2 − 1)2 + (1 − 0)2 + (1 − 1.5)2

=
√

0.25 + 1 + 1 + 0.25

= 1.58

d(g4, g2,3) =
√

(1 − 2.5)2 + (0 − 1)2 + (1 − 0)2 + (0 − 1.5)2

=
√

2.25 + 1 + 1 + 2.25

= 2.55

d(g5, g2,3) =
√

(0 − 2.5)2 + (0 − 1)2 + (3 − 0)2 + (3 − 1.5)2

=
√

6.25 + 1 + 9 + 2.25

= 4.3

The most similar pair at the end of the second iteration is g1 with g2,3

(with value 1.58). This becomes a new protogene, with new averages
calculated for this protogene either by adding the values of all three
genes for each sample together and dividing by three (e.g. for patient
1, g1 value of 3, g2 value of 2, and g3 value of 3, giving average 2.67),
or by treating the g2,3 as one gene and calculating a new average based
on just two sample values (e.g. for patient 1, g2,3 value of 2.5 and g1

value of 3, giving average 2.75). Adopt the latter strategy, giving a new
protogene g1,2,3 with values 2.75, 1.5, 0.5 and 0.75 for the four patients,
respectively.

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

142 NEAREST NEIGHBOUR AND CLUSTERING APPROACHES

The third iteration will consist of pairwise comparisons between gene
4, gene 5 and the new protogene:

d(g4, g5) = 3.742
d(g4, g1,2,3) =

√
(1 − 2.75)2 + (0 − 1.5)2 + (1 − 0.5)2 + (0 − 0.75)2

= √
3.06 + 2.25 + 0.25 + 0.56 = 2.47

d(g5, g1,2,3) =
√

(0 − 2.75)2 + (0 − 1.5)2 + (3 − 0.5)2 + (3 − 0.75)2

= √
7.56 + 2.25 + 6.25 + 5.06 = 4.6.

The most similar pair now is g4 with g1,2,3. This gives a new protogene
g1,2,3,4 with values 0.5, 0, 2 and 1.5. The final step is to compare the two
protogenes g1,2,3,4 and g5:

d(g1,2,3,4, g5) =
√

(0.5 − 0)2 + (0 − 0)2 + (2 − 3)2 + (1.5 − 3)2

=
√

0.25 + 0 + 1 + 2.25 = 1.87.

Putting all this together, the gene clustering diagram in Figure 5.4(a) is
obtained, where the patient values are described in the order p1, p2, p3
and p4. But patient samples can also be clustered. Applying the Euclidean
method for clustering patients to a transposed version of Table 5.4 (Table
5.5), the first iteration is:

d(p1, p2) =
√

(3−2)2+(2−1)2+(3−1)2+(1−0)2+(0−0)2 = 2.65

d(p1, p3) = 5.1

d(p1, p4) = 4.58

d(p2, p3) = 3.61

d(p2, p4) = 3.74

d(p3, p4) = 2.65.

Table 5.5 The transposed version of the data in Table 5.4, in prepara-
tion for patient clustering

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Patient 1 3 2 3 1 0
Patient 2 2 1 1 0 0
Patient 3 1 0 0 1 3
Patient 4 0 1 2 0 3

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

ADVANCED CLUSTERING TECHNIQUES 143

There are two clusters of p1 with p2, and p3 with p4 with value
2.65. Form ‘superpatients’ from each of these and calculate the new
means: p1,2 = (2.5, 1.5, 2, 0.5, 0) and p3,4 = (0.5, 0.5, 1, 0.5, 0). These
two superpatients have similarity:

d(p1,2, p3,4) =
√

(2.5−0.5)2 + (1.5−0.5)2 + (2−1)2 + (0.5−0.5)2 + (0−0)2 = 2.45

The final clusterings for both genes and patients are provided in Figure
5.4(b).

If p3 and p4 belong to one particular class, such as being prostate can-
cer sufferers, whereas p1 and p2 belong to another class, such as normal,
the clusterings in Figure 5.4(b) would indicate that Gene 5 separates p3
and p4 as a pair from p1 and p2, and that Gene 1 and Gene 4 further
separate p3 from p4 (perhaps severity of the cancer).

Gene 2

Gene 3

Gene 1

Gene 4

Gene 5

2 1 0 1

3 1 0 2

3 2 1 0

1 0 1 0

0 0 3 3

Gene 2

Gene 3

Gene 1

Gene 4

Gene 5

Gene clustering

Gene clustering

Gene expression values

Gene expression
 data-set

Patient values (p1,p2,p3,p4)

Patient/sample clustering

p4 p3 p2 p1

0 1 2 3

(a)

(b)

Figure 5.4 (a) Represents the results of clustering just the genes, whereas (b) rep-
resents the results of clustering the samples as well. Also, each gene
expression value has been given a different shade so that a visual repre-
sentation of gene clustering is obtained

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

144 NEAREST NEIGHBOUR AND CLUSTERING APPROACHES

A number of methods exist for forming clusters in addition to those
described above, which is a form of hierarchical cluster method that
requires each sample or gene to form its own unique point in space, with
successive iterations used to merge two samples into a cluster and then
clusters into ‘superclusters’ depending on their distance from each other.
Other clustering methods first allocate each sample or point uniquely to
a cluster so that several clusters exist after the first round of iterations.
Clusters are then linked together by using a pair of points, one from
each cluster, which is closest to each other (‘single linkage clustering’) or
furthest from each other (‘total linkage clustering’), rather than adopting
a hierarchical approach as in this chapter.

The importance of clustering gene expression data was demonstrated
by Eisen et al. (1998) when they analysed gene expression of the Saccha-
romyces cerevisiae during the diauxic shift, mitotic cell division cycle,
sporulation, and temperature and reducing shocks. The data consisted
of all genes for which functional annotation was available (2467). They
applied hierarchical clustering using the average linkage method, using
averages for the joined elements as they formed the tree. Their analy-
sis clearly demonstrated that genes of similar function cluster together
and that groups of coexpressed genes are involved in common cellular
processes. Genes of unrelated sequence but similar function were also
found to be clustered together. The software used by Eisen et al. is avail-
able publicly as ‘Cluster’ and ‘Treeview’ (for Windows only) and can
be downloaded from http://rana.lbl.gov/EisenSoftware.htm. Images pro-
duced by these two pieces of software are among the most common seen
in gene expression analysis.

5.6 Application guidelines

Nearest neighbour and clustering approaches to data analysis are some
of the oldest described in this book. As such, they have found a huge
number of applications in academia and industry ranging from the
sciences and engineering to more abstract problems. In addition to
their longevity, each of these techniques benefits from simplicity. For
the most basic techniques, a nearest neighbour or clustering approach
can be implemented very easily, as the algorithms themselves are
simple and can be applied directly to the data. There are few complex
transformations to be done. A good reference here is Sami Kaski’s
web page http://www.cis.hut.fi/∼sami/thesis/node2.html. It comes
as no surprise that bioinformatics has also made full use of these

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

SUMMARY OF CHAPTER 145

techniques in the short time that it has existed. Clustering techniques
in particular are probably one of the most well used techniques in
problem areas where the data has high-dimensionality (for instance
in gene expression analysis). They can be used in their own right to
determine useful information from high-dimensional data, but also as
a method for pre-processing data for use by other algorithms which
benefit from the lower number of variables. Essentially, if similarities
between variables of the data are required from an algorithm, clus-
tering techniques provide this with little computational effort. The
Bioinformatics Toolbox from http://www.mathworks.com provides
a useful set of clustering algorithms for Matlab. Yeung, Medvedovic
and Bumgarner (2003) apply clustering to repeated measurement gene
expression data, and the software they used can be downloaded from
http://expression.microslu.washington.edu/expression/kayee/cluster
2003/yeunggb2003.html. More complex relationships and structures
which involve interactions between variables often require the use of
other techniques. Similarly, nearest neighbour techniques can provide
a fast and computationally efficient method for classifying new data,
but are generally not as accurate as some other classification tech-
niques seen here. Both algorithms could provide good solutions where
implementation and computation time are a priority.

Almost all bioinformatics websites and journals have sections regard-
ing clustering as it is probably the most ubiquitous technique in bioin-
formatics applications. Therefore no single resource is recommended
for this: inputting the keywords ‘clustering’ and ‘bioinformatics’ into a
search engine such as Google2 (or more specifically Citeseer3) will yield
a large number of resources.

5.7 Summary of chapter

1 Nearest neighbour and clustering approaches are examples of ‘unsu-
pervised’ techniques in that they attempt to find relationships among
attributes and samples by using only patterns of coexpression and
similarity among attribute values shared by samples.

2 Unsupervised gene expression data analysis consists of expression
profile clustering to find groups of coexpressed genes in static data

2 See http://www.google.com.
3 See http://www.citeseer.com.

JWBK023-05 JWBK023-Keedwell March 31, 2005 2:56 Char Count= 0

146 NEAREST NEIGHBOUR AND CLUSTERING APPROACHES

(that is, data that is not measured over time) or, if temporal gene
expression data is available, coregulated genes (that is, genes that are
all expressed or not expressed together at certain time points).

3 Unsupervised approaches do not rely on additional information, such
as the class into which a sample falls, to build their clusterings.

4 Unsupervised approaches are therefore considered ‘natural’ by many
researchers in that they find natural partitions of samples and/or genes
into subsets.

5 However, there are a number of problems with clustering, including
different results being returned depending on the clustering meth-
ods adopted (which means that researchers need to know something
about the techniques used) and interpretation of the final cluster dia-
grams.

6 Nevertheless, clustering is useful for identifying genes that are max-
imally differentiated from each other for further analysis as to their
possible roles in partitioning samples.

5.8 References

Dasarathy, B.V. (1991) Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques. IEEE Computer Society Press.

Eisen, M.B., Spellman, P.T., Brown, P.O. et al. (1998) Cluster analysis and display of
genome-wide expression patterns. Proc. Natl. Acad. Sci., 95, 14863–14868.

Friedman, J.H., Bentley, J.L. and Raphael, A.F. (1977) An algorithm for finding
best matches in logarithmic expected time. ACM Transactions on Mathematical
Software, 3(3), 209–226.

Levin, J. (1997) Exploring the limits of nearest neighbour secondary structure pre-
diction. Protein Eng., 7, 771–776.

Levin, J., Robson, B. and Garner, J. (1986) An algorithm for secondary structure
determination in proteins based on sequence similarity. FEBS, 205, 303–308.

Michener, C.D., and Sokal, R.R. (1957) A quantitative approach to a problem in
classification. Evolution, 11, 130–162.

Sneath, P. H. A. and Sokal, R.R. (1973) Numerical Taxonomy. Freeman, San Fran-
cisco.

Winston, P.H. (1992) Artificial Intelligence. Addison Wesley.
Yeung, K.Y., Medvedovic, M. and Bumgarner, R.E. (2003) Clustering gene-

expression data with repeated measurements. Genome Biology, 4:R34 (0pen ac-
cess: http://genomebiology.com/2003/4/5/R34).

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

6
Identification (Decision) Trees

6.1 Method

Identification trees are probably the most widely applied intelligent tech-
nique. They have been used for a huge variety of applications in com-
merce and academia ranging from the sciences, through engineering to
financial, commercial and risk-based applications. In fact, identification
trees are most used in everyday life as they are often applied in the retail
sector where they are used to determine and predict our shopping and
spending habits. Practically every store has a loyalty scheme of some de-
scription, and the terabytes of data that are collected about customers
contain salient information about how and why we behave in the way
that we do. To discover this information from the data, it must be mined
to reveal the interesting features and remove those that are irrelevant or
noisy. It is in this process of data mining that identification trees have
become most well known. Their success in these commercial areas can
also benefit the field of bioinformatics as many problems in this field
consist of large amounts of noisy data. As with many techniques, the
success of the identification tree approach is due partly to its simplicity
and efficiency. In terms of its execution, the identification tree is an al-
gorithm that has few complex steps. The following section describes the
notion of classification and the method that the identification tree uses to
classify data taken from many domains, including those with very large
databases such as bioinformatics.

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd

147

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

148 IDENTIFICATION (DECISION) TREES

Classification

The task of classification is one that is prominent in a large number of ap-
plication areas. It is essentially the task of creating rules or structures that
will group individuals into predetermined classes by identifying common
patterns or traits for those individuals, as given by the data. The identi-
fication tree approach is therefore ‘supervised’ in that the algorithm has
knowledge of the classes into which individuals fall when constructing
rules or structures for classification. This is to be contrasted with the
‘unsupervised’ approaches of Chapter 5, where nearest neighbour and
clustering techniques partition the data into subsets depending on simi-
lar patterns of values across the attributes of the dataset. Classification
can be used to answer a wide variety of questions in many application
areas. For instance, questions that can potentially be answered by em-
ploying classification include the following.

1 What features make an individual prone to sunburn?

2 What features of a Post Office make it more or less prone to robbery
or burglary?

3 What are the genetic differences between diseased individuals and
normal individuals?

In each of these examples, at least two, mutually exclusive classes
are required (e.g. ‘sunburnt’ versus ‘non-sunburnt’; ‘high-risk’ versus
‘medium risk’ versus ‘low risk’; ‘diseased’ versus ‘normal’) into which
all samples fall, where these classes are predetermined and included in
the data. The task for the classification algorithm is to select, across a
dataset of individuals or samples with known class, those features (or
attributes, or variables) which are most strongly associated with a par-
ticular classification for each sample. Normally there is no restriction to
the number of features that are used, but classification algorithms are
compared on their accuracy and the number of features used for classi-
fying all samples. The fewer the number of features used for classifying
all samples therefore, the better the solution. The goal of classification
algorithms is to produce a rule set (called a ‘classification model’) that
uses the fewest number of attributes/features for classifying all the sam-
ples in the database, on the assumption that these attributes/features are
the most important for classification. Compact solutions are important

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

METHOD 149

because the results of the classification process often have to be scru-
tinized by individuals who are experts in their domain, and complex
solutions involving a large number of features are often very difficult to
interpret.

This ability to interpret and evaluate a classification model is perhaps
even more important in bioinformatics, as often the bioinformatician is
not an expert in the biological or biomedical field in question. Small and
accurate solutions to classification problems are the most desired, and
the identification tree algorithm has built its reputation on discovering
these in other domains.

Identification trees

Identification trees have proved very successful in the classification do-
main for a number of reasons.

1 They are relatively undemanding in computational terms in compar-
ison with other techniques in this book.

2 They provide clear, explicit reasoning of their decision making in the
form of symbolic decision trees which can be converted to sets of
rules.

3 They are accurate and, in more recent guises, increasingly robust in
the face of noise.

Identification trees, as their name suggests, produce a tree of features
that provide tests for classifying each of the samples/records in the data
according to their most salient features. The basic premise is that only
a few features are required to classify all the samples, and the problem
for a classification algorithm is to search for and identify this reduced
feature set given all the features in the dataset. The approach is to test
each feature iteratively to identify its potential for dividing the samples so
that they fall into the given classes. This is best shown with an example.

Table 6.1 shows some example data about the umpires’ decision to
play a cricket match. As cricket is played outside, there are various factors
that determine whether the umpires will allow play to take place. In this
example, data on three factors thought to be influencing the decision,
namely the weather, the light and the condition of the ground, is collected
and stored.

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

150 IDENTIFICATION (DECISION) TREES

Table 6.1 Factors influencing the umpires’ decision to play a cricket match

Weather Light Ground condition Umpires’ decision

Sunny Good Dry Play
Overcast Good Dry Play
Raining Good Dry No play
Overcast Poor Dry No play
Overcast Poor Damp No play
Raining Poor Damp No play
Overcast Good Damp Play
Sunny Poor Dry Play

From this data, an identification tree can be constructed that can show
which are the important factors in making the decision. It is obvious
that there is not one feature that can determine whether play will take
place (classify the dataset completely).The task is to determine, from the
data, the rules the umpires are explicitly or implicitly using to determine
whether play should take place. An identification tree can be constructed
which will provide information as to which features are important in
making the decision.

Identification tree algorithm summary

The aim of the identification tree algorithm is to split the data so that
each subset of the data uniquely identifies a class in the data. Some of
the terms in this summary may not be familiar, but are explained in the
detailed algorithm description. The decision tree algorithm can simply
be summarized as follows.

1 For each feature, compute the gain criterion.

2 Select the best feature and split the data according to the values in
that feature.

3 If each of the subsets contains just one class then stop. Otherwise,
reapply points 1–3 on each of the subsets of data.

4 If the data is not completely classified but there are no more splits
available then stop.

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

METHOD 151

Identification tree algorithm detail

The algorithm needs to divide up the set of training examples into two
smaller sets that completely encapsulate each class ‘Play’ and ‘No play’.
The ‘supervised’ aspects of the algorithm in contrast to the unsupervised
techniques of the previous chapter, consist of the class values being used
to determine the effectiveness of an attribute in being able to partition
the samples consistently into one of these classes. Each division is known
as a test and splits the dataset in subsets according to the value of the
feature. For instance if a test on ‘Light’ is performed this gives:

Light = Good: yields four examples, three of class ‘Play’ and one of ‘No
play’

Sunny Good Dry Play
Overcast Good Dry Play
Overcast Good Damp Play
Raining Good Dry No play

Light = Poor: yields four examples, one of class ‘No play’ and three of
‘Play’

Overcast Poor Dry No play
Overcast Poor Damp No play
Sunny Poor Dry Play
Raining Poor Damp No play

Notice that no attention is paid to the other two attributes ‘Weather’
and ‘Ground condition’ when testing the effectiveness of ‘Light’. The
above test on ‘Light’ separates the samples into two subsets, each with
three examples of one class and one of another. In a different problem,
this might be considered a good result, and it would be true that the light
level would have an impact on whether the umpires allowed play to take
place. In this example, this test has been chosen at random and is not the
best way of splitting the data. Therefore a measurement of the effective-
ness of each attribute/feature is required by the algorithm to determine
which feature is best for classifying the samples. This measure must
reflect the distribution of examples over the classes in the problem. The
best-known currently employed measure is known as the gain criterion.

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

152 IDENTIFICATION (DECISION) TREES

6.2 Gain criterion

The gain criterion is based on the amount of information that a test on the
data conveys. This information-theory based approach has been shown
to be more effective than a simple tally of the number of individuals
in each class, and is the primary method used in commercial packages
including See5 and C4.5.1 The information contained within a test is
related to the probability of selecting one training example from that
class. This probability is easily described by noting the frequency with
which a particular class Cj appears in the training set T:

freq(Cj ,T)
|T | . (6.1)

The information conveyed by this is then computed as –log2 of the prob-
ability. This gives:

− log2

(
freq(Cj ,T)

|T |
)

. (6.2)

This equation therefore computes the information conveyed from each
class of the training set and to get the expected information from the
training set as a whole, this measure is summed over all classes, multi-
plying by their relative frequencies:

in(T) = −
k∑

j=1

freq(Cj ,T)
|T | ∗ log2

(
freq(Cj ,T)

|T |
)

. (6.3)

This gives the information measure for the entire training set. Each test
that is devised by the algorithm must be compared with this to determine
how much of an improvement (if any) is seen in classification. When a
test is performed, the data is split into a number of new subsets (as
seen previously when the data was split using ‘Light’). To measure the
information yielded by a split x the weighted sum over the subsets is used:

inx(T) = −
n∑

i=1

|Ti |
|T | ∗ log2

(
freq(Cj ,T)

|T |
)

. (6.4)

The gain given by a particular test can be given by subtracting the result
of Equation 6.4 from Equation 6.3:

gain(X) = in(T) − inx(T). (6.5)

1 This software and documentation is available from http://www.rulequest.com.

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

GAIN CRITERION 153

The identification tree algorithm proceeds through each feature, com-
puting the gain criterion for each feature, selects the best of these, and
then uses the same method on the remaining subsets.

This can be seen more clearly in the example given above. First, the
decision tree will evaluate all possible features. We start with the hypoth-
esis that no features are important and then check each of the features
in turn:

in(T) = −4/8 ∗ log2(4/8) – 4/8 ∗ log2(4/8) = 1.0

inweather(T) = 2/8 ∗ (−2/2 ∗ log2(2/2) − 0/2 ∗ log2(0/2)) (Sunny)
+4/8 ∗ (−2/4 ∗ log2(2/4) − 2/4 ∗ log2(2/4)) (Overcast)
+2/8 ∗ (−0/2 ∗ log2(0/2) − 2/2 ∗ log2(2/2)) (Raining)
= 0.5 bits.
Gain = 1.0 − 0.5 = 0.5.

inlight(T) = 4/8 ∗ (−3/4 ∗ log2(3/4) − 1/4 ∗ log2(1/4)) (Good)
+4/8 ∗ (−1/4 ∗ log2(1/4) − 3/4 ∗ log2(3/4)) (Poor)
= 0.811 bits.
Gain = 1.0 − 0.811 = 0.189.

inground(T) = 5/8 ∗ (−3/5 ∗ log2(3/5) − 2/5 ∗ log2(2/5)) (Dry)
+3/8 ∗ (−1/3 ∗ log2(1/3) − 2/3 ∗ log2(2/3)) (Damp)
= 0.951 bits.
Gain = 1.0 − 0.951 = 0.049.

For instance, for ‘weather’, two of the eight samples (2/8) have the at-
tribute value ‘Sunny’, of which two out of two (2/2) fall in the class ‘Play’
(the first and eighth samples in Table 6.1) and none of the two (0/2) fall in
the class ‘No play’, plus (+) four out of eight samples have the attribute
value ‘Overcast’, of which two out of four (2/4) fall in the class ‘Play’
and two out of four (2/4) fall in the class ‘No play’, plus (+) two out
of eight (2/8) samples have the attribute ‘Raining’, of which none of the
two (0/2) fall in the class ‘Play’ and two out of two (2/2) fall in the class
‘No play’. In this example, the feature ‘Weather’ would be selected as the
first attribute on which to split the data as it has a far higher informa-
tion gain (0.5) compared with the other two features (0.189 and 0.049).
This constitutes the first node of the tree and now the training data is
split into three sets, one each for ‘Sunny’ ‘Overcast’ and ‘Raining’. Two
of these three sets (those for ‘Sunny’ and ‘Raining’) have individuals of
only one class (‘Play’ and ‘No play’, respectively), so no further action
is required on them. However the ‘Overcast’ subset has two individu-
als of class ‘Play’ and two of ‘No play’. The algorithm now proceeds to

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

154 IDENTIFICATION (DECISION) TREES

investigate whether a further test using one of the remaining two features
can classify this dataset correctly.

Weather Light Ground condition Umpires’ decision

Overcast Good Dry Play
Overcast Poor Dry No play
Overcast Poor Damp No play
Overcast Good Damp Play

By considering the remaining data as a new sample set (S), the same
procedure can be used to determine a new split to improve the current
tree:

in(S) = −2/4 ∗ log2(2/4) − 2/4 ∗ log2(2/4) = 1.0 bits.

inlight(S) = 2/4 ∗ (−2/2 ∗ log2(0/2) − 0/2 ∗ log2(0/2)) (Good)
+2/4 ∗ (−0/2 ∗ log2(0/2) − 2/2 ∗ log2(2/2)) (Poor)
= 0.0 bits.
Gain = 1.0 − 0.0 = 1.0.

inground(S) = 2/4 ∗ (−1/2 ∗ log2(1/2) − 1/2 ∗ log2(1/2)) (Dry)
+2/4 ∗ (−1/2 ∗ log2(1/2) − −1/2 ∗ log2(1/2)) (Damp)
= 1.0 bits.
Gain = 1.0 − 1.0 = 0.0.

In this second iteration the algorithm has found that by splitting this
subset of data on the feature ‘Light’, the data is completely classified.
That is, each subset of the data as determined by the decision tree has
only individuals belonging to one class in the set. The final decision tree
can be seen in Figure 6.1.

The construction of the tree is reasonably simple, as the same compu-
tation can be applied to the increasingly small sets of data as determined
by previous splits. This algorithm therefore represents an elegant solution
to the problem of supervised classification in datasets.

Continuous data

The example above uses only discrete data, where each feature is split
up into a number of categories that are used in the decision tree. Real-
world – and especially biological – data contain a lot of continuous (real

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

GAIN CRITERION 155

Sunny Raining

Good Poor

Weather

Play

Play

No play

No play

Light

Overcast

Figure 6.1 The final tree generated by executing the identification tree algorithm on
the cricket example dataset; this tree classifies the training data exactly,
with two examples at each of the four leaves

or floating point) values and the identification tree algorithm has a sys-
tem for dealing with these values. The system relies on the fact that
whilst the range of the data itself might be continuous in nature, the
data presented to the algorithm must, by definition be a set of finite,
discrete observations of that continuous range. The continuous data is
treated in much the same way as the discrete data, but with one im-
portant difference. Whereas the discrete data uses the ‘=’ operator, the
continuous data uses the comparison operators (‘<’, ‘≤’, ‘>’, ‘≥’) to de-
termine the subsets of the data created by a test. There are n − 1 possible
tests given a continuous attribute which has n possible values, but gen-
erally speaking the evaluation of each of these tests can be determined
in short computational time. It is in this fashion that the decision tree
algorithm can be used for classification with continuous and discrete
values.

For instance, if the ‘Light’ attribute had contained values ranging from
‘1’ (very poor light) to 10 (‘excellent light’), one test resulting from the
identification tree algorithm might be ‘If Light ≥ 6 then Play’, which
would return a figure describing how many Play cases with a value of 6 or
more for the ‘Light’ attribute are captured by this test. The identification
tree algorithm can test different continuous values in the range of values
for an attribute for their effect on classification and choose appropriate
thresholds to maximize the correct number of cases falling on either side
of the comparison tests.

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

156 IDENTIFICATION (DECISION) TREES

Gain ratio

The gain ratio seen in Quinlan (1993) is a more sophisticated version of
its forerunner, the gain criterion. The difficulty with the gain criterion
is that it is biased towards tests which have many subsets. For instance,
the split on ‘weather’ produced a dataset with three subsets, one each
for overcast, sunny and raining. The remaining two attributes (‘light’
and ‘ground’) yielded two subsets. We will see in the following example,
the gain criterion weighted the split on ‘weather’ more favourably than
it should have because of the larger number of values the attribute has.
This behaviour is to be avoided as tests that result in many subsets are
not necessarily those that will yield the most useful information. The gain
ratio (Quinlan, 1993) is a revised gain measure that takes into account
the size of the subsets created by test. To compute the gain ratio, the gain
(as computed in Equation 6.5) is divided by the information contained
by the number of subsets in the split. This ‘split information’ measure
can be used to normalize the gain criterion seen above, and is computed
as:

splitin(X) = −
n∑

i=1

|Ti |
|T | ∗ log2

(|Ti |
|T |

)

. (6.6)

This gives a final gain ratio equation:

gainratio(X) = gain(X)
splitin(X)

. (6.7)

Returning to the example above, if the data is split on the attribute
‘weather’ then three subsets are created, two of which contain two
records, and one which contains four. The split information can therefore
be computed as:

−2/8 ∗ log2(2/8) − 2/8 ∗ log2(2/8) − 4/8 ∗ log2(4/8) = 1.5

Taking the gain criterion score of 0.5 for the attribute ‘weather’ from the
example above, the gain ratio is computed as:

0.5/1.5 = 0.33.

Splits on the other attributes in the data yield two even subsets with
four records apiece in them, which yields a split information of 1.0. In this

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

OVER FITTING AND PRUNING 157

circumstance, the gain criterion values remain unchanged for attributes
‘light’ and ‘ground condition’, and the attribute ‘weather’ is still chosen
as the first split in the tree. However, its influence has been reduced (from
0.5 using gain criterion to 0.33 using gain ratio) so the effect on the gain
criterion exerted by the fact that the attribute splits the data into more
subsets has been reduced somewhat by using the gain ratio.

By using a simple algorithm and an information-theory approach, the
identification tree can discover useful and accurate information from a
set of data which may not be obvious on first observation. The small
example dataset, when combined with the ability to process continu-
ous values and a revised gain ratio, illustrates the principles behind the
execution of the identification tree algorithm. These improvements to
the algorithm become increasingly valuable when there are thousands or
millions of data records in the dataset. With data of this size and type,
which is frequently the norm in commercial and scientific applications, a
robust, efficient and accurate algorithm is necessary to extract meaning
from the collected data. The entire process of data collection, manipu-
lation, knowledge discovery and interpretation is known as data mining
and probably constitutes the single largest application of artificial intelli-
gence techniques outside the academic laboratory. The identification tree
algorithm is certainly not the only data mining algorithm, but it is one of
the most popular. There are, however, some drawbacks to the approach.

6.3 Over fitting and pruning

To a certain extent every algorithm involved with classification runs the
risk of over fitting the data. This is the phenomenon where the algorithm
learns the errors (noise) in the data as well as the underlying structure
of the processes that created the data. This phenomenon occurs because
every algorithm attempts to reduce the error in classifying the data, and
many algorithms including identification trees can reduce this error by
introducing more and more splits in the data. When this happens the
model can become overly complex, which in itself is not desirable due
to the increase in model size, and therefore it cannot be interpreted as
easily. However, a further effect is that the tree becomes so accurate on
the training data samples that a new sample not seen previously by the
identification tree is falsely classified. Essentially, the algorithm has learnt
the training data too well in that it has learnt the erroneous data as well
as the underlying patterns. To identify when this problem occurs, the
data can be divided into two sets: the training set and the test set. The

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

158 IDENTIFICATION (DECISION) TREES

training set usually comprises about 75 per cent of the total dataset,
with the remaining 25 per cent of samples kept back precisely to check
on overfitting. The identification tree algorithm is then ‘trained’ on the
training set only, and when it has constructed a tree the test set is fed to
the tree to check on the accuracy of the tree. The class into which each of
the samples in the test set falls is of course known, and this knowledge can
be used to check on the accuracy of the identification tree. A variant of
this method is to run this ‘train–test’ regime on several different training
and test sets randomly generated from the original data. Providing that
the test data has been drawn from the same population as the training,
then this deleterious effect can be determined as overfitting and a strategy
should be used to overcome it.

A widely-used strategy for dealing with over fitting is pruning. This
is a process whereby the entire tree is generated as previously described
until no more good splits can be made. Once this has occurred, the tree
is pruned back, according to certain criteria, so that complex branches
of the tree are consolidated into smaller, perhaps less accurate (on the
training data) sub-branches. This is obviously less efficient than simply
generating a smaller tree in the first place, but Quinlan (1993) states
that the method of generating and pruning performs more reliably than
stopping or prepruning. Any subtree (that is not a leaf) can be considered
for reduction to a leaf where the leaf classification is the most frequent
class member of that subtree. However, the pruning method must use
some estimate of the expected error of:

1 the current subtree, and

2 the leaf that is replacing the current subtree.

If restricted to the training data, the current subtree will have the fewest
errors every time, so some measure must be made of the expected error
incurred on other data. This can either be done by using data set aside
for testing (although as this data will be used to tune the model, a further
‘test’ set will be required to truly evaluate performance at a later stage), or
by using some heuristic estimate. Quinlan (1993) uses a heuristic based
on the upper bound of the binomial distribution, due to the fact that
often (and especially in bioinformatics problems) there is not enough
data to generate one or more hold-out sets for testing. The concept of
pruning is included here because the level of pruning is often a parameter
in constructing an identification tree and can influence the accuracy of

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

OVER FITTING AND PRUNING 159

the results that are obtained. In addition to this, it is important to note
that a complete decision tree is seldom kept in its unpruned form and
some level of pruning is required for the tree to generalize beyond its
training set.

Other disadvantages with identification trees

Whilst the simplicity and efficiency of the identification tree algorithm is
central to its popularity, this approach has also been criticized in some
quarters. The majority of the criticism focuses on the deterministic way
the algorithm splits the data. The example seen previously shows the
algorithm selected the first split on the attribute ‘Weather’. However, it
may be that by splitting the data firstly by weather, that other effects in
the data are lost. The fact that the split in the data is selected based on
the fact that it has the best gain criterion at a certain stage is a central
tenet of the approach and is instrumental in its efficiency. However, the
approach would benefit from some element of depth-first search where
the split is evaluated not only on its current ability to classify the data,
but the accuracy of the split later on in the algorithm run. Inevitably, this
would lead to a greatly increased amount of computation, as a partial
or even entire tree would have to be generated for each split and there
may only be a small number of problems which would benefit from its
application. The tree-like nature of the identification trees ensures that
the first split will always be the most important, but it is only evaluated
as to how well it classifies the data at that particular point. It may be that
another tree exists, with a different starting split, which classifies the data
much more accurately. There have been a number of methods suggested
to counteract this effect, including the use of other algorithms to select the
starting split for the decision tree (this approach is seen in one of
the applications later in this chapter). However, these approaches are
liable to require more computation than the original algorithm and there-
fore may not be as amenable to large datasets.

Conclusions

Identification trees have been used extensively in industry and academia
and are perhaps the most widely applied artificial intelligence technique
covered in this book. This success is largely attributable to the efficiency

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

160 IDENTIFICATION (DECISION) TREES

of the algorithm which enables it to be applied to huge datasets that
other algorithms could not mine within a reasonable time scale. With
businesses collecting terabytes of data relating to customer transactions
and other business activity, this efficiency is vital and, as is often the
case, is due largely to the simplicity of the approach. This efficiency is
in turn due to the simplicity of the split evaluation function, based on
information-theory approaches; it does not require any complex math-
ematics to develop a highly accurate assessment of the effectiveness of
a split. For bioinformatics, though, it remains to be seen whether iden-
tification tree approaches will become as prevalent as they are in other
domains. Bioinformatics data (such as gene expression data) often has
a vast number of variables (genes), but a small number of records (ex-
periments) in contrast to commercial data which is often the reverse
of this and so algorithms must be efficient given this atypical level of
complexity.

6.4 Application guidelines

Introduction

Identification trees as described previously can be used in a large vari-
ety of situations where information is required from a set of data col-
lected from a variety of sources. They are especially useful when there
are a large number of records in the data. In addition to this, they can
be used when explicit reasons for classification need to be provided,
for instance in applications where safety-critical considerations prevail
or where the results need to be scrutinized by expert users. This is of-
ten the case in bioinformatics problems where the results need to be
tested by biologists to determine whether the results have biological
plausibility.

Therefore, when the results are required to be explicit and when there
is a lot of data, identification trees can discover knowledge in good
time. However, they are essentially restricted to problems of classifica-
tion where the class of the training set individuals is known. As such,
they cannot be considered as flexible as some of the other techniques
in this book such as genetic algorithms, genetic programming or neu-
ral networks, as these techniques can be used for a variety of purposes,
in addition to classification. This supervised approach is in contrast to
the other ‘unsupervised’ techniques seen in this book such as clustering

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

APPLICATION GUIDELINES 161

(Chapter 5) and kohonen networks (Chapter 7) which do not require
this explicit definition of class within the data.

Cross-validation

An important aspect of applying any machine learning technique to bioin-
formatics problems, but especially identification trees, is the use of test
data. Often in bioinformatics problems the number of data records avail-
able for an experiment (especially in the case of microarray experiments)
can be small relative to the number of attributes. Therefore it may not
be feasible to split the data into separate large training and test sets.
Instead, cross-validation can be used where the algorithm is run repeat-
edly on different training and test sets. Cross-validation splits the entire
dataset into a number of folds, which is determined by the experimenter
and the amount of data available. If the data is split into five folds, then
the machine learning technique is trained on four fifths of the data and
then tested on the remaining one fifth. This is then repeated for all the
other four folds in the dataset, testing on a different fold each time. The
measure of accuracy is determined by the average error of each run on
each fold of the dataset. Figure 6.2 shows this process graphically. In this
example, the training dataset is split into eight sections, seven of which
are combined and used to train the identification tree and the remaining
fold used to test the example. This is repeated for the N (in this case eight)
folds in the dataset and the average accuracy or error reported over the
N runs of the algorithm. One advantage of this approach is that, at the
end of the five-fold process, there will be five possibly different identifi-
cation trees. Future samples with unknown class can then be fed to all
five identification trees and a ‘majority vote’ taken as to which class the
new sample falls into.

As described previously, the number of folds chosen is usually deter-
mined by the computational time available to the experimenter (more
folds take more time to run) and the amount of data in the dataset.
A popular specific cross-validation technique is ‘leave-one-out’ cross-
validation which, as its name suggests, leaves one example out of the
dataset for testing and trains the algorithm on the remaining data. This
is still N-fold cross-validation, but where N is equal to the number of data
records (individuals or samples) in the dataset, and is the most compu-
tationally demanding cross-validation technique as N trials must be run.
The cross-validation process gives a good impression of the accuracy of

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

162 IDENTIFICATION (DECISION) TREES

Training set 1

Training
data

Test set 1

Training set 2 Test set 2

Training set N Test set N

•
•
•

Figure 6.2 An example of N-fold cross-validation

the approach that can be expected on non-training data and is especially
useful where the amount of data is restricted, which is often the case in
problems in biology.

Software

Data mining is big business and identification tree software forms a rea-
sonably large sector of this market, so there are various implementations
to choose from. However, because they are used so frequently by large
corporations, the larger packages can often be costly. These packages
tend to incorporate a large amount of external software which allows
connection to a variety of databases, exporting results in a number of
formats and good visualization of the results. If these extra features are
required, the SPSS Clementine2 package is frequently described as the
industry standard and includes a number of approaches (neural net-
works, nearest neighbour algorithms and, of course, identification trees)

2 More information can be found at http://www.spss.com/clementine.

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

BIOINFORMATICS APPLICATIONS 163

described in this book. If a more cut-down identification tree software
package is required, then See5 (Windows) or C5 (UNIX)3, developed by
Ross Quinlan, represents a neat and efficient implementation of the al-
gorithms discussed here. In addition to this, See5 is kept up-to-date with
the latest advances in the field so that it incorporates new features such
as ‘boosting’, ‘cross-validation’ and ‘fuzzy thresholds’. If a simple and
quick algorithm implementation is required with rudimentary visualiza-
tion of results, then See5 is highly recommended. An alternative to this
package is CART4 (Breiman et al., 1984) which should be considered
when choosing a decision tree algorithm.

As might be expected for a technique that was conceived up to 20 years
ago, there are a number of open source sites with code for identification
tree algorithms. An excellent public-domain library of machine learning
code written by Ron Kohavi is available from SGI5. This includes a large
variety of algorithms, including variants of C4.5 (as described above)
and other rule induction approaches such as CN2 and is available for
both Windows and UNIX operating systems. Written in C++, this is
more than a simple implementation of the algorithms since it includes a
variety of utilities and is also well documented.

6.5 Bioinformatics applications

HIV and Hepatitis C (HCV) protease
cleavage prediction

As previously described in Chapter 2, viral protease is one of the enzymes
typically accompanying HIV RNA and HCV into the cell (see Figure 2.10,
Chapter 2). It cleaves the precursor viral polyproteins (the substrate)
at specific cleavage-recognition sites when they emerge from the ribo-
somes of the host cell as one long sequence (Figure 6.3(a)). When certain
substrate configurations occur (a certain sequence of amino acids), the
protease cleaves the viral polyprotein at a specific point in the substrate
(Figure 6.3(b)). Conventionally, the polyprotein substrate is labelled with
unique P identifiers (one for each amino acid) and the protease region
around the active site with unique S identifiers (Figure 6.3(c)).

This cleavage step is essential in the final maturation step of HIV and
HCV. That is, protease is responsible for the post-translation processing

3 Available from http://www.rulequest.com.
4 Available from http://www.salford-systems.com/.
5 Available from http://www.sgi.com/tech/mlc/index.html.

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

164 IDENTIFICATION (DECISION) TREES

Helper T cell ribosome(a)

(b)

(c)

(d)

HIV polyprotein

Polyprotein
substrate

Protease

aa1

P4 P3 P2 P1 P1' P2' P3' P4'

S4 S3 S2 S1 S1' S2' S3' S4'

aa2 aa3 aa4 aa5 aa6 aa7 aa8

Protease
active site

Rest of
protease

Protease locks
onto polyprotein
residues

HIV protease binds to 8 (or 9) consecutive amino acids in the
polyprotein before clearing between specific amino acids

Protease inhibition: anti-viral agent consisting of manufacturer pseudo-
polyprotein fragments that ‘stick’ to the protease through competitive or
non-competitive binding

Protease

Figure 6.3 The final maturation phase of HIV

of the viral gag and gag-pol polyproteins to yield the structural proteins
and enzymes of the virus for further infection.

There are two current methods for inhibiting viral proteases. Compet-
itive inhibition consists of identifying an inhibitor that will lock on to
the protease’s active site and thereby prevent that protease from bind-
ing to any further substrate (Figure 6.3(d)). These inhibitors are used
only once (one inhibitor – one protease). Non-competitive inhibition,
on the other hand, works by identifying a regulatory site rather than an
active site of the protease so that the inhibitor, when bound to the regu-
latory site, distorts the structure of the protease and thereby prevents it

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

BIOINFORMATICS APPLICATIONS 165

from binding to its substrate. Inhibitors must be carefully and specifically
designed so that they do not affect the naturally occurring proteases in
the human body.

A significant amount of potential cleavage site data for HIV and HCV
has been produced through laboratory in vitro experiments, where the
effect of these proteases on synthetic oligopeptide sequences have been
observed and recorded, constituting data sets for pattern recognition and
machine learning applications. Another way to produce negative cleavage
sites is to assume that regions between known cleavage sites are non-
cleavage. That is, as well as trying to produce cleavage and non-cleavage
oligopeptide sequences in vitro, the full polyprotein sequence of the virus
can be analysed by a computer and fixed length sequences (either eight
or 10 amino acids long for the HIV and HCV polyproteins, respectively)
which are currently not known to be cleavage sites are extracted as
‘negative cleavage’ sequences. For HIV, experimental work suggests that
cleavage takes place in the middle of an octopeptide substrate (i.e. be-
tween the fourth and fifth amino acid), whereas for HCV the situation is
more complicated. In fact HCV has at least three proteases, each of which
works on distinct regions of the long S. polypeptide sequence. We focus
on the region subject to one of these proteases, NS3. For NS3 there is evi-
dence that cleavage takes place between the sixth and seventh amino acid
of a decapeptide substrate. For HIV a 363-substrate dataset was available
(Cai and Chou, 1998) consisting of 114 sequences that were clinically
reported as cleaved and 249 sequences as non-cleaved. For HCV a special
dataset was constructed from the literature consisting of 168 NS3-cleaved
sequences (as reported in the clinical literature) and 147 sequences that
were derived by moving a 10-amino acid substrate window along the
HCV polyprotein sequence so that decapeptide regions not overlapping
with known cleavage regions or each other (as far as possible) were
identified and tagged as non-cleavage. The samples were represented to
See5 (Quinlan, 1993) as an eight-character string of amino acids (using
the amino acid alphabet) for HIV samples and as 10-character strings
for HCV. Each sample was terminated with a ‘1’ to signify cleavage or
‘0’ to signify non-cleavage. The task for See5 was to determine whether
there was a pattern of amino acids in the substrate that could help
determine whether the viral protease did or did not cleave (Narayanan,
Wu and Zhang, 2002), for the design of possible future protease
inhibitors.

So, for instance, one HIV sample for See5 was G,Q,V,N,Y,E,E,F,1,
where G occupied first position of the substrate, Q the second position,

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

166 IDENTIFICATION (DECISION) TREES

etc., and the final 1 signified that this sample was cleaved. An example
of a HCV sample is D,L,E,V,V,R,S,T,W,V,0, where the 10 positions in
the substrate are encoded D through to V and 0 signifies non-cleavage.
The datasets were separately analysed by See5, using a 10-fold cross-
validation technique. For HIV the final accuracy figure across all 10 folds
on test data was 86 per cent, with 25 false negatives (25/248 non-cleavage
cases were incorrectly classed as cleavage) and 26 false positives (26/114
cleavage cases were incorrectly classed as non-cleavage). For HCV the
accuracy figures for test data were slightly worse but still respectable
at 82 per cent, with 27 (27/147) false negatives and 32 (32/168) false
positives.

For the total HIV dataset, the following rules were derived by See5
(where ‘(x/y)’ after each rule signifies the number of false classifications).
(a) If position4 is phenylalanine then cleavage (35/5). (b) If position4 is
leucine then cleavage (38/9). (c) If position4 is serine then non-cleavage
(26/1). (d) If position4 is tyrosine and position5 is proline then cleavage
(32/5). Other minor rules covering fewer cases tended to reflect the impor-
tance of positions 4 and 5 (on either side of the cleavage site). However,
none of the rules was successful in capturing the majority of cases (114
positive sequences in total). One interesting piece of new knowledge ex-
tracted by See5 was the relative importance of position 6 (If position6 is
glutamate then cleavage (44/8)). Also, the above rules provide evidence
that hydrophobic residues phenylalanine and tyrosine are involved in
cleavage site prediction (rules (a) and (d)).

For HCV, the following rules were found. (a) If position6 is cysteine
then cleavage (133/27). (b) If position6 is threonine and position4 is
valine then cleavage (28/5). (c) If position6 is cysteine and position7 is
serine then cleavage (100/33). (d) If position1 is aspartate then cleavage
(122/41). (e) If position10 is tyrosine then cleavage (98/22). (f) If posi-
tion10 is leucine then cleavage (70/27). Since this is the first time that
HCV substrates have been analysed in this way, these rules represent po-
tential new knowledge of HCV NS3 substrates. Also, for both HIV and
HCV substrates See5 has for the most part found the positions on either
side of the cleavage site that intuitively are the most important (positions
4 and 5 for HIV, positions 6 and 7 for HCV), although there is nothing
in the representation of the samples to See5 that gave it any indication of
where the actual cleavage sites were. This provides some evidence that
future protease competitive inhibitors for HIV and HCV will have to pay
particular attention to these positions of the substrate if inhibitors are to
work effectively.

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

BIOINFORMATICS APPLICATIONS 167

Classification of cancer by using diagnosis data

A good deal of the classification problems in bioinformatics data are re-
lated to the problem of determining the clinical diagnosis of an individual
based on gene expression data or some other measurement of cellular
activity. The application of identification trees to this classification task
provides a good introduction to the application of the technique in bioin-
formatics. However, the work undertaken by Li et al. (2003) takes the
decision tree process a step further, by using a committee of trees to decide
the outcome of the classification task. The reason for this is similar to
the problem described earlier, in that identification trees are deterministic
and use the top ranked feature every time a split is required. This leads to
only one tree being created that may be sub-optimal, whereas a tree with
a different starting point may perform better. Therefore Li et al. used a
committee of trees which are first started on the best performing feature
(the optimal, or C4.5 tree), but a tree is then grown from the second-best
performing feature, and then the third best, up to a stopping point. The
trees can then be converted to rules (for more information on this proce-
dure see Quinlan (1993)) and added together to create a large knowledge
base. This knowledge base can then be used to classify the data, includ-
ing new examples. There are, however, difficulties when using multiple
rules for the same individual; for instance, some of the rules may place
the individual in a certain class, and other rules may disagree. This con-
flicting behaviour is resolved by using the coverage statistic (the number
of individual records covered by the rule) as a measure of the efficacy of
that rule. Therefore the coverage for each rule that fires is summed for
each class (similar to a weighted-voting system) and the class with the
highest weight is predicted.

Li et al. show that they gain excellent results in comparison with See5,
including the latest developments such as boosting, on a variety of clas-
sification problems taken from the bioinformatics literature. The results,
which are based on the cross-validation of datasets, show that, as ex-
pected, the committee approach performs better on these problems than
the single C4.5 results with boosting or bagging. The first experiment
was conducted on ovarian cancer containing 253 mass spectrometry
proteomic samples, 91 of which were controls and 162 of which repre-
sented ovarian cancer. Each of these samples contained 15 154 features
which were the relative amplitudes of the intensities for each molecu-
lar mass/charge identity. A 10-fold cross-validation procedure was used
to ensure consistency of results. The results showed that the committee

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

168 IDENTIFICATION (DECISION) TREES

approach classified this dataset with no errors, whereas C4.5 incurred 10
errors. A second experiment was conducted which was designed to dis-
tinguish between six sub-types of acute lymphoblastic leukaemia (ALL)
by using gene expression profiles. The data here consisted of 327 indi-
vidual samples, each of which was comprised of 12 558 gene expression
values. In a 10-fold cross-validation approach the committee approach
incurred errors on seven cases in comparison with 23 for C4.5.

Therefore this study highlights the fact that identification trees by
themselves can be difficult to apply to large-scale data with few records
such as gene expression or proteomic data due to the fact that it will
use only one or two features to classify the set. However, the committee
approach shows that with repeated application of the identification tree,
including the modification of its parameters, a more complete classifier
can be created. Whilst the reported accuracy results are good, the in-
creased accuracy is to be expected to a certain degree, as the committee
approach means that the performance will only be as bad as the worst
tree in the committee. It is also worth noting that the computation re-
quired to generate the committee approach is considerably larger than a
single run of the identification tree algorithm. Although the number of
individuals in gene expression experiments is currently small, in the fu-
ture it is possible that the approach, if used on large datasets, will require
significant extra computation.

Consensus method for secondary protein
structure prediction

The prediction of secondary and tertiary protein structure from the un-
derlying amino acid combinations is one of the most pressing problems in
bioinformatics. The secondary structure determines how groups of amino
acids form sub-structures such as the coil, helix or extended strand. The
correct derivation of the secondary structure provides vital information
as to the tertiary structure and therefore the function of the protein.
There are various methods which can be used to predict secondary struc-
ture, including the DSSP approach which uses hydrogen bond patterns
as predictors, the DEFINE algorithm which uses the distance between
C-alpha atoms, and the P-CURVE method which finds regularities along
a helicoidal axis. As might be expected, these disparate approaches do
not necessarily agree with each other when given the same problem and
this can create problems for researchers. The work by Selbig, Mevissen
and Lengauer (1999) develops the decision tree as a method for achieving

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

BACKGROUND 169

consensus between these approaches by creating a dataset of predicted
structures from a number of prediction methods for the same dataset.
The correct structures for each of the protein elements in the training set
is known, and this forms the classification for each of the records in the
training set. The identification tree therefore creates rules of the form

IF Method1 = Helix AND Method2

= Helix THEN Consensus = Helix

In this way, the identification tree can choose when it is prudent to
use certain structure prediction methods and when to use others. This
methodology ensures that prediction performance is at worst the same
as the best prediction method, and in the best case should perform better
than that. The results were reported on two datasets, one consisting of
396 proteins (the CB396 dataset, Cuff and Barton (1999)) and the 11
CASP3 proteins6. For each of these datasets, seven prediction methods
are combined in the consensus tree, and an 11-fold cross-validation pro-
cedure is used to determine the accuracy of each of the techniques. The
prediction accuracy of the consensus method is better than any of the
single methods for both datasets, but also achieves improved results in
comparison with another consensus method, JPRED. The decision tree
approach improves on the JPRED method by achieving a marginal ac-
curacy improvement of 72.9 per cent as opposed to 72.6 per cent on the
CB396 dataset. On the CASP3 dataset, however, the approach improves
on JPRED by 1 per cent as it achieves 76.0 per cent accuracy.

This therefore shows a good example of how the intelligent approach
of the decision tree can be used to optimally combine existing standard
methods of secondary structure prediction. It also provides a neat exam-
ple of how modern machine learning algorithms can be combined with
established scientific methods based on chemo-biological principles. The
result of this union is improved accuracy on this difficult problem in
bioinformatics.

6.6 Background

The decision tree methodology described here in the method section is
that of C4.5 (See5) written by Quinlan in 1993. This was predicated,
however, by ID3, again created by Quinlan, in the early 1980s which

6 Dataset available from http://predictioncenter.llnl.gov/casp3/Casp3.html.

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

170 IDENTIFICATION (DECISION) TREES

included the basic structure that is employed in C4.5. The original idea
Quinlan credits to Hoveland and Hunt and concept learning systems
which, as many of the notions in this book seem to have been, were
created in the 1950s.

Since Quinlan designed C4.5 and See5, there have not been any sig-
nificant paradigm-shifts in the way that decision tree software works.
There has been an explosion in the number of software packages which
use identification or decision trees, but the theory behind them remains
much the same. Advances have come in the shape of improvements to
the way that splits are evaluated, how the results are visualized and ad-
ditional methods such as bagging and boosting. These areas have now
become an important area for research in data mining with decision trees.

6.7 Summary of chapter

1 Decision trees use information-theory measures to divide a set of
training examples into known classes.

2 They are efficient with respect to the size of the data, and can be run
on most datasets with a modest machine.

3 The information discovered by decision trees is easily interpreted and
can be converted into rules to be digested by non-technical personnel.

4 Their efficiency and transparency aid their application in many com-
mercial domains, but often their inflexible deterministic approach can
prevent them from being used in bioinformatics problems.

6.8 References

Breiman, L., Friedman, J., Olshen, R. et al. (1984) Classification and Regression
Trees. Wadsworth International Group, Belmont, CA.

Cai, Y.D. and Chou, K.C. (1998) Artificial neural network model for predicting
HIV protease cleavage sites in protein. Advances in Engineering Software, 29–2,
119–128.

Cuff, J.A. and Barton, G.J. (1999) Evaluation and improvement of multiple se-
quence methods for protein secondary structure prediction. Proteins Struct. Funct.
Genet., 34, 508–519.

Li, J., Liu, H., Ng, S-K. et al. (2003) Discovery of significant rules for classifying
cancer diagnosis data. Bioinformatics, 19, Suppl 2, 93–102.

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

REFERENCES 171

Quinlan, J.R. (1993) C4.5: Programs for Machine Learning, Morgan Kauffman, San
Mateo, California.

Narayanan, A., Wu, X. and Zhang, R.Y. (2002) Mining viral protease data to extract
cleavage knowledge. Bioinformatics, 18, Suppl 1, 5–13.

Selbig, J., Mevissen, T. and Lengauer, T. (1999) Decision tree based formation of con-
sensus protein secondary structure prediction. Bioinformatics, 15, 1039–1046.

JWBK023-06 JWBK023-Keedwell March 31, 2005 3:1 Char Count= 0

172

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

7
Neural Networks

7.1 Method

Neural networks were originally conceived as computational models of
the way in which the human brain works. Like the human brain, they
consist of many units (analogous to neurons and sometimes called by
the same name) connected to each other by variable strength links (anal-
ogous to axons in the brain). These variable strength links are abstract
representations of the way that most neurons actually communicate with
each other in the brain: through changes in the rate or frequency of elec-
trical or chemical messages. As with a number of the techniques described
in this book, this technique has been inspired by the way biological or-
ganisms (in particular humans) solve the problems of computation in
nature. As mathematical models, they have found a large number of ap-
plications in science and commerce, particularly in the area of finance
and market prediction. The attraction of neural networks is that they
can ‘learn’ relationships between sets of variables taken from a system.
Once trained, the network can then be shown new examples and asked
to predict the outcome of the new data based on the previous examples
it has learnt. This quality, known as generalization, is the ability to infer
the underlying relationships in the data and being able to apply them
to new situations and is the staple reason for their use in such a wide
variety of contexts. This may sound similar to the method by which hu-
mans learn and, to a very limited extent, this is true. A further property
which distinguishes this technique from other computational methods is
that of ‘graceful degradation’. The knowledge learnt is encoded in the

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd

173

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

174 NEURAL NETWORKS

network as a set of ‘weights’, the individual strength of these weights
determines the behaviour of the network. Should any of these weights or
units be removed, the network can still function but with reduced per-
formance, a little like the human brain. This is in contrast to most other
computational techniques which cannot function at all if one or more
parts of their decision making process is faulty. Neural networks should
not, however, be seen as constituting biologically significant models of
human brain activity, although some studies are conducted into the sim-
ulation of human brain activity (under the umbrella of connectionism)
for the purposes of this book, they are merely useful computational tools.
Therefore, as computational tools, neural networks represent somewhat
of a departure from many of the other techniques in this book which
have a more symbolic flavour. They have a step-by-step algorithm of op-
eration, but the resulting neural structure has a little more in common
with biology than the other methods described in this book.

Architecture

A neural network consists of interconnected units, often arranged in lay-
ers. The configuration of these units is known as the architecture, and
can vary widely depending on the application for which it is used. In the
simplest neural networks there are only two layers – one ‘input’ layer and
one ‘output’ layer – and are known as ‘perceptrons’ (Rosenblatt, 1958).
These networks are only able to discriminate linear relationships be-
tween variables because they possess only one layer of weights. The more
sophisticated ‘multi-layer’ perceptron (as popularised in Rumelhart &
McClelland, 1986) adds a number of ‘hidden’ layers of units and there-
fore the two sets of weights increase the power of the network to infer
non-linear relationships between variables. There is no theoretical limit
to the number of layers a network can possess, although these two are
among the most popular.

Learning

In most applications of this type of neural technique, the task for the
network is to relate the variables it receives in the input layer to some de-
sired behaviour at the output layer by repeatedly presenting the examples
to the network in a process known as training. Somewhat analogous to
learning in human infants, neural network training allows the network
to determine the correct response to the input patterns that are presented

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

METHOD 175

to it. Once trained, the neural network should be capable of predicting
an output given a previously unseen set of inputs. This training is known
as supervised learning because the output is known for the training data
points and therefore the required response can be given to the network
during training. Supervised neural networks differ from traditional super-
vised learning, such as that used by identification trees, in that traditional
supervised learning deals only or mainly with classification and super-
vised neural networks have a more general capability than this. Neural
networks can also act as transducers (converting one form of input to
another form of output). One of the most important aspects of neural
network output is that it can be ‘real-valued’, whereas traditional classi-
fiers can usually only output one of several discrete values that represent
the class into which a sample falls. However, neural networks can also be
used where the required response is not known, for instance in clustering
tasks, with an unsupervised approach. These networks use training based
solely on the input data, have no input, output and hidden layer distinc-
tions, and are frequently used in domains where the required response is
not known. The following sections describe the component parts of the
neural network in addition to the training regimes employed in their use.

Units and weights

The unit (also known as a neuron or node) is the main processing element
of the neural network. It receives a set of input signals and, combined with
an internal function, converts the input signals to an output signal. The
internal function can be as simple as a step function, or a more complex
transformation such as the commonly used sigmoid function. Based on
these functions, the activation function makes a ‘decision’ whether to fire
and propagate the signal further up the network, based on the weight
of the incoming signals. The step function ensures an ‘all-or-nothing’
response is given, whereas the sigmoid function produces a more grad-
uated response. Figure 7.1 shows these two functions in mathematical
and graphical form.

The task of the sigmoid function in Figure 7.1, for instance, is to take
the incoming weights, check whether an internal threshold is exceeded,
and if it is to calculate the output as the function of 1 divided by 1 plus
the exponent of the value it has calculated. The effect is to produce an
output that varies between 0 and 1, where large numbers of incoming
negative values produce an output that is close to 0 and large numbers
of incoming positive values produce an output that is close to 1. Another
term for a sigmoid function is a ‘logistic’ function. Many other types of

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

176 NEURAL NETWORKS

T
hr

es
ho

ld
 o

r
st

ep
 f

un
ct

io
n

Si
gm

oi
d

fu
nc

ti
on

(a)

(b)

If (activation > threshold)
output = 1 Else output = 0

Output = 1
1 + e−α (activation)

Figure 7.1 Two possible activation functions to determine the output of a node
given the sum of its input: (a) the threshold function gives a simple 1 or
0 response depending on the magnitude of the incoming signal; (b) the
sigmoid function responds in a more graduated manner and the slope
of the curve is dependent on the α value in the equation

function exist within neurons to convert incoming values into an output
value, and such functions are called ‘transfer functions’, or ‘activation
functions’, in the neural network literature.

One of the major characteristics of neural networks is that the links
between nodes are themselves weighted, which is why the input to a neu-
ron is usually called a weight. So even if a ‘1’ is output by a transmitting
neuron, if the weight attached to a link that carries that value to another
neuron is 0.1, then the receiving neuron receives 0.1.

The important principle is that although the functions themselves are
very simple, when a number of them are assembled together and con-
nected with weighted connections, highly complex computation is possi-
ble. The weighted connections propagate signals from unit to unit mod-
ifying the strength of the signal according to their weight. Weights are
modified in the training process and provide much of the learning capa-
bility of the network.

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

METHOD 177

Architectures revisited

As described previously, the arrangement of units and weights in the neu-
ral network (often referred to as the architecture) has a profound effect
on the performance of the network and even its purpose. There are a
huge number of architectures that have been devised for a variety of pur-
poses, and there are far too many to list in this book, so only the most
useful architectures for bioinformaticians are described. The most com-
monly used of these are the feed-forward backpropagation architectures
where the units are arranged in layers as described previously, and the
learning algorithm is known as supervised learning. The feed-forward
aspect of the name of this network is due to the direction of flow of
the data, whereas backpropagation describes the fact that the errors in-
curred during learning are propagated back through the network. The
directional aspects of these processes are shown in Figure 7.2, and the
learning process is discussed in detail later in this section.

A very different architecture is known as the Kohonen Self Organizing
Map (KSOM) (Kohonen, 1990) and belongs to the group of unsuper-
vised learning algorithms. KSOMs are very different from feed-forward
backpropagation networks in that all the input nodes are connected to
every node in a one- or two-dimensional array of interconnected nodes.

Input data

Expected output

E
rr

or
 b

ac
kp

ro
pa

ga
ti

on

Figure 7.2 The architecture of a three-layer neural network: the direction of the
data flow is shown along with that of the error which is backpropagated
through the network (note that the centre layer of units have no direct
contact with the input or output and are therefore named ‘hidden’ units)

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

178 NEURAL NETWORKS

SOFM

In
pu

t
da

ta

Figure 7.3 The architecture of a self-organizing feature map: the map itself forms
the output of the network and every output node is connected to every
other; the input data comes from the input layer, and error correction is
attempted by changing the weights of units in the map (note the differ-
ences between this approach and the one shown in Figure 7.2)

This array of nodes is known as the feature map and constitutes the
output of the KSOM – there is no distinct output layer as with the feed-
forward backpropagation networks. This network architecture is shown
in Figure 7.3.

The variety of architectures possible for neural networks can be seen
in these two examples. The architecture is strongly linked to the purpose
for which it has been built, for instance feed-forward networks are often
used for classification and simulation, whereas KSOM networks are used
for clustering and pattern recognition. Therefore the range of applica-
tions for a neural network is reflected by the range of architectures. The
following section describes how these organized sets of units and weights
that constitute a neural network can learn relationships from the input
(and in the case of supervised learning, output) data that is presented to
them.

Supervised learning

As described previously, supervised learning is the process of learning
relationships between input and output data. In this type of learning,
input data is passed to the input layer, propagated through the units and
weights of the neural network, and the response of the network is com-
pared to the required response, which is dictated by the output data. The
discrepancy between the two is calculated and the network then makes
changes to its internal weights to reduce the error the next time this

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

METHOD 179

input data is presented. This process is repeated for all the input data
and, once completed, constitutes one ‘epoch’. Most neural networks re-
quire a moderate (100–10 000+) number of epochs to effectively learn
the relationships between input and output data. Supervised learning can
be applied to many different types of architecture, and remains largely
unchanged regardless of the number of hidden layers. However, two dif-
ferent algorithms are used for perceptrons and multi-layer perceptrons.
The algorithm is concerned with computing the error at the output nodes
and propagating this error back down the network from layer to layer.
The computation of this error is different for output layers and hidden
layers. The simplest learning rule is that of Rosenblatt’s perception and
it is this which is described below.

Perceptron learning rule

1 Initialize the network weights and unit thresholds to some small ran-
dom values.

2 Present the input data (i1, i2, i3 . . . in) and the desired output (o) data
to the network

3 Calculate the output from the network using the expression:

f (s)[
n∑

k=1
wk(t)ik(t)].

4 Adapt the weights:
(a) if correct wk(t + 1) = wk(t),
(b) if output is 0 and should be 1 wk(t + 1) = wk(t) + ik(t),
(c) if output is 1 and should be 0 wk(t + 1) = wk(t) − ik(t),

where wk(t) is the weight value at time t, wk(t + 1) is the weight value at
time t + 1 (i.e. after updating) and f (s) is the function used to compute
the output in the network (in this case, the step function). This learning
rule ensures that the weights are changed so that the next time this same
input pattern is shown, the weights alter the network behaviour so that
it is closer to giving the correct response. Figure 7.4 shows the learning
process. This is the simplest learning rule and a variety of modifications
have been subsequently added, including the introduction of a � term to
modify the weights more slowly giving the equation

wk(t + 1) = wk(t) + �ik(t).

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

180 NEURAL NETWORKS

Output (t)

OR

Execute network

i1

w1 w2

i2

Output (t)
If output is 1, required = 0

i1

w1 − i1 w2 − i2

i2

Output (t)
If output is 0, required = 1

i1

w1 + i1 w2 + i2

i2

Figure 7.4 The perceptron learning rule for a single input pattern: once the network
has been executed, the error between the output and the required output
is calculated; depending on the result of this calculation, the weights in
the network are modified to provide a better response the next time the
network is presented with that input

This is sufficient to enable learning in a perceptron but, as discussed in
previous sections, this is the simplest of neural networks and can only
process linear interactions between variables. The following section de-
scribes the rule required for multi-layer perceptions.

Backpropagation

For larger architectures with a ‘hidden layer’ a more complex learning
rule is required. The multi-layer perceptron often uses the sigmoid func-
tion. Therefore when the difference between the actual and desired output
patterns is calculated, the weights must be changed in accordance with the

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

METHOD 181

derivative of this function, as opposed to the simple increment/decrement
approach when considering the step function. Also, because more than
one layer of weights is considered, the learning rule must take into ac-
count this fact and contain some method of backpropagating the error
through the network. The multi-layer perceptron learning rule therefore
implements the sigmoid derivative and backpropagation to allow it to
learn.

1 Initialize the thresholds and weights.

2 Present the input data (i1, i2, i3 . . . in) and the desired output (o) data
to the network.

3 Calculate the output from the network using the expression

f [
n∑

k=1
wkik] for each layer in the network. The output from the final

layer is the vector of output values.

4 Adapt the weights, starting from the output layer and moving back-
wards using the equation

wi j (t + 1) = wi j (t) + δpjopj

where opj is the output of node j for pattern p and δpj is defined as:

for the output layer: δpj = copj (1 − opj)(dpj − opj)

for hidden layers: δpj = copj (1 − opj)
∑

k
δpk − wjk,

where d is the desired output, o is the actual output and c is a constant
used in the sigmoid function. The sum shown for hidden layers is over
the k nodes in the layer above the current layer for which the δpj will
already have been computed.

The equations above, illustrated in Figure 7.5, increment (or decre-
ment) the weights of the network based on the error at the layer above.
In the case of the output layer, the error is directly computed with the
desired response, whereas the hidden layer computes its error based on
the weighted error propagated back from the output layer. This process
therefore allows the network to adapt its weights to correct the difference
between its current output and the desired output. When applied a num-
ber of times over all the input and output data, the network reconfigures

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

182 NEURAL NETWORKS

Output (t)
Execute network

i1

w1

w1

w2

i2 i3

... wx

Backpropagate

i1

w1 + δj

w1 + δk ... wx + δk

δk δk

δj

w2 + δj

i2 i3

Figure 7.5 The backpropagation learning rule for a single input pattern: the net-
work is again executed, and the error between outputs and desired out-
put calculated

itself to be more accurate and can then be used to predict the outcome
of new examples. This type of learning is only possible when the desired
response is known and therefore supervised learning can take place. The
desired response, however, is not known for some problems and there-
fore unsupervised learning rules exist to find interesting patterns in the
data and to partition it into clusters and it is this which is considered in
the next section.

Unsupervised learning

Kohonen self-organizing maps (KSOMs) operate in the following way.
If all the output nodes (one- or two-dimensional) are interconnected and
all input nodes are connected to all nodes in the output layer with no
hidden layers, the task is to project the structure of the input data onto
some topological structure at the output layer. The location of a neuron
in the output layer should ideally reflect a particular domain or feature
of the input data. Assuming that there are a number of input samples,
we choose one at random and feed it into the input layer. Even if the
weights connecting the input layer to the output layer have been initially
randomized, one output node will have an activation value that is higher
than all other output nodes. This is called the ‘winning’ node and the
weights leading to that output node from all the input nodes are recorded.

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

METHOD 183

All these weights are then updated in such a way that if the same pattern
is presented again later there is even more chance of the output node
having the highest activation value. To ensure that this happens, the
competitive learning algorithm used by KSOMs increases the weights
of not just the winning node but also, by a lesser amount, the weights
of nodes neighbouring the winning node, with this increase falling away
further away from the winning node. If the next input pattern shares some
features with the previous pattern, there is an increased likelihood that
output nodes near the winning node will be more highly active than other
nodes far away, and over time input samples sharing similar features will
activate neighbouring nodes in the output layer.

For example, imagine that we have two objects, a rectangle and a
triangle (Figure 7.6), on a nine by eight grid. These figures are converted
into a bit vector representation which’s presented to the input nodes of a
KSOM, with a 1 in a training pattern signifying that a particular square
of the grid is occupied by a shape. These 18 eight-bit vectors are fed
into an eight-node input layer which is fully connected to a four by five
output layer. Ideally, after training, the output layer should reflect in its
topology some aspects of the structure of the two shapes.

Unsupervised learning relies on the assumption that the data has an
underlying structure that determines to which classification or pattern

Input layer

Fully connected
output layer

Full connection

18 training
patterns

00000000
00110000
00011111

...1
1 2 3 4 5 6 7 8

9
8
7
6
5
4
3
2

1
1 2 3 4 5 6 7 8

9
8
7
6
5
4
3
2

(00000000)(00000000)(00110000)(00110000)(...)(...)...

Nine eight-bit vectors representing the grid row by row

(00...00)(00...00)...(00000100)(00001110)(00011111)(00000000)

Figure 7.6 An idealized KSOM

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

184 NEURAL NETWORKS

the input data belongs. Unsupervised learning does not require a desired
response (and therefore output data) to train and is concerned with dis-
covering a common set of features across the input data in one class or
pattern. The output of the Kohonen network is seen in the feature map
which is a grid of interconnected units. The feature map organizes itself
so that it effectively clusters the data into groups with similar features.
To accomplish this, the weights from the inputs to the map are randomly
initialized. When the input data closely matches the input weight, the
area around that node is optimized to represent the average of the train-
ing data. By iterating through this process, the Kohonen network is able
to organize itself such that different areas of the map represent differ-
ent classes in the data. The Kohonen algorithm can be more formally
summarized in the following steps.

1 Initialize the network by setting the weights to be small random val-
ues. Also set the initial neighbourhood size N to be large.

2 Present input patterns I1(t), I2(t), I3(t) . . . In(t) where Ix(t) is the input
to node x at time t.

3 Calculated the distances, dj , between the input and each node in the
map j .

dj =
n∑

x=1

(Ix(t) − wi j (t))2.

4 Select the node which has the minimum distance dj and mark it m.

5 Update the weights for node j∗ and its neighbours which are defined
by the neighbourhood size. The new weights are defined as

wi j (t + 1) = wi j (t) + η(t)*(Ix(t) − wi j (t)).

6 Repeat 2–5.

The η term is a factor, less than one, which slows learning over time and is
included so that the network makes smaller decisions with each training
epoch. A further factor in these equations is that the neighbourhood size
is made smaller throughout training which leads to more refined moves
in the latter stages of the learning process.

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

APPLICATION GUIDELINES 185

Unsupervised learning is especially useful where data has been col-
lected from an experiment, but no output classification has been deter-
mined. As such, this is one of the techniques in this book that can discover
patterns and classify data without using some form of explicit notion of
how closely it matches a desired response. This is especially important
in bioinformatics since various problems in the analysis of microarray
data or of protein structure prediction do not have definitive classical
examples on which the network can be trained.

These two learning rules show the wide variety of learning behaviour
that can be performed using neural network methods. They represent
only two of a number of learning methods and functions which can be
employed depending on the type of problem that is being solved. One of
the strengths of the neural approach is the sheer flexibility in the number
of options available for architecture, activation function and training
regime. A drawback of this flexibility is that there is no generally accepted
method for choosing a specific architecture or activation function given a
problem definition. Indeed, selecting the neural network parameters has
often been described as an art rather than a science. To aid this selection,
the following section gives some guidelines as to the application of neural
networks to problems in bioinformatics.

7.2 Application guidelines

Neural networks have been used for a huge variety of applications in
a large number of scientific and engineering domains and they can be
considered one of the standard artificial intelligence (AI) techniques for a
variety of purposes. Whilst there are undoubtedly a number of situations
in which the application of a neural network is the recommended course
of action, there are also some caveats to their usage for particular prob-
lems. Put simply, a neural network that is properly trained on a suitable
problem can provide very good or even genuinely surprising results on
new data. It is the ability of the neural network to generalize beyond the
data that it has been trained on which makes it so powerful. However,
they have some drawbacks.

1 Neural networks can overfit (a term for overtraining). If a neural net-
work is trained for too long, it can begin to fit the weights to the
noise in the training data as well as the underlying structure which is
present. When this happens, the error on the training data will con-
tinue to decrease, but the error on the test data will actually increase.

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

186 NEURAL NETWORKS

Commercial neural network packages now include a cross-validation
facility to combat this effect. This method trains the network for one
epoch, freezes the weights, tests the trained network on a separate
test set and restarts the training. This approach is repeated for each
epoch of training. The error on the cross-validation set can then be
used to stop the training of the neural network when it begins to
increase. This mitigates many of the problems of overtraining, and
gives a good idea of the error that can be expected on test data.

2 The architecture requires some input from the user. Deciding on the
appropriate architecture for a neural network should largely be in-
formed by the type of data and complexity of the problem being
solved. However, there are no hard and fast rules as to the number
of hidden layers, or units in those layers for example that are re-
quired for a particular problem. For prediction accuracy and ease of
result interpretation, a supervised learning algorithm (i.e. multi-layer
perceptron) should be selected if the desired response is known. The
minimum number of hidden layers should be used that can achieve
the required accuracy. For each addition of a hidden layer, the power
of the network is increased, but with an attendant increase in the like-
lihood of overfitting and, of course, computation time. A good rule
of thumb is that any hidden layers used should have fewer units than
the input layer. In fact, many applications use a stepped approach
where the number of units in the hidden layer decreases from input
to output. If, using unsupervised learning, the number of nodes in the
feature map will influence the number of clusters that are discovered
in the data, this parameter should also be selected with care. These
are very general guidelines and a good number of applications will
require deviation from them, but they can be used as initial parameter
settings when a new problem is considered.

3 Finally, it can be difficult to determine the reasoning for the deci-
sion making behaviour of the neural network. A trained neural net-
work contains many weights, biases and thresholds, often in high-
dimensional matrices, and it is a non-trivial process to determine the
exact reasoning behind its behaviour on a certain dataset. Certainly, if
one or more hidden layers is used, determining the combined effect of
each input at each hidden layer and onto the output layer is very diffi-
cult indeed. In this case, sensitivity analysis (manipulating the inputs
in a structured way and observing the output response) can provide
some information that may be very difficult to derive from the weight

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

BIOINFORMATICS APPLICATIONS 187

matrices. If neural networks are to be applied to a problem, the prob-
lem should generally not require that the decision making behaviour
of the network can be explained in human-understandable terms.

Implementation

Whilst the above set of problems, architecture choices and mathematical
equations can seem quite daunting, there is a large body of research and
software available to aid the application of neural networks to problems
in bioinformatics. For instance there is a vast array of neural network
software implementations available on the internet. One of the most
famous and respected free implementations is the Stuttgart Neural Net-
work Simulator or SNNS1 which is available from the University of Tub-
ingen, Germany; it has a wealth of architecture options and has versions
for a variety of operating systems. Commercial neural network products
abound, but a useful interactive point-and-click style software package
is Neurosolutions2 from Neurodimension. This package has a large li-
brary of built-in network architectures and the user interface is such that
creating new architectures is simply accomplished by manipulating the
components of the network on screen. It also has a data-driven Neural
Wizard which guides the user through the process of creating a neural
network for a particular problem.

In addition to these there are various neural network implementations
in all programming languages on the internet and a good selection of
information sources to help with neural networks3.

7.3 Bioinformatics applications

Introduction

Neural networks have received a significant amount of attention as an
AI algorithm for bioinformatics. As with many of the algorithms in this
book, each method is chosen for its suitability to a particular problem. It
comes as no surprise then that most bioinformatics applications focus on
the ability of the neural network to cluster and recognize patterns within

1 More information available from http://www-ra.informatik.uni-tuebingen.de/SNNS/.
2 More information available from http://www.nd.com.
3 A search on the web for ‘Neural Network FAQ’ will give a variety of pages pointing to the

valuable neural network reference.

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

188 NEURAL NETWORKS

biological data. The following examples have been selected as they give
an overview of what is possible by using both the above techniques in
bioinformatics problems.

Classification and dimensionality reduction
of gene expression data

Introduction

Gene expression data is currently one of the hottest topics in bioinfor-
matics and it looks set to be one of the most revealing analysis techniques
used in biology. Microarray data is notoriously difficult to process, even
after a successful experiment it is noisy and requires many statistical
transformations to yield correct and normalized gene expression val-
ues. However, even once this is achieved, there are further difficulties in
analysing this type of data, namely that the number of genes is so large
that typical analysis methods can be completely ineffective in the face
of the ‘curse of dimensionality’. Gene expression experiments are often
used to attempt to distinguish between diseased and normal individuals,
or to distinguish between two types of a disease by solely using the ex-
pression values of genes taken from those individuals. This is of primary
importance to medical science as a number of different cancers are very
difficult to diagnose. Narayanan et al. (2004) and earlier, Khan et al.
(2001) have both shown that single layer neural networks (or percep-
trons) can be used as an effective method for reducing the number of
genes to be considered in an analysis.

Method and results

In Narayanan et al. (2004) a standard perceptron was iteratively applied
to a gene expression dataset and genes stripped from the dataset based
on the weight values taken from the neural network. Essentially, the per-
ceptron was used as a method for determining the importance of each
gene to the classes in the dataset. In this paper, a multiple myeloma dataset
was used where the task was to distinguish the 74 multiple myeloma suf-
ferers from the 31 normal individuals, based solely on their gene expres-
sion profiles. The data consisted initially of 7129 genes, had a classifica-
tion of either myelomic or non-myleomic and was separated into three
separate sets, used for training, tuning and testing respectively. These sets
were used in a three-fold cross-validation procedure where each set was

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

BIOINFORMATICS APPLICATIONS 189

used in turn to train, tune and test the neural network. This type of test-
ing is common in classification tasks such as this one and ensures that
the results are generalizable.

The method consists of a number of steps.

1 Pre-process the data – gene expression data is often in a format
whereby genes are listed as rows and samples as columns. This facil-
itates the viewing process, but the neural network requires the data
in the transposed format, so a transposition must be carried out. In
addition to this, the data can often have missing values, again the
neural network will require values in each column and row, so these
values are often imputed.

2 Training and testing – this approach uses a three-fold cross-validation
technique where the data is split into three datasets. The neural net-
work is trained, tuned and tested on each of these three datasets in
turn, and the results averaged over the three runs. This ensures that
the accuracy of the approach is robust over a number of different
datasets.

3 Gene pruning – once the perceptron has been trained, the weights of
the network are inspected to determine which genes are most highly
related to the classification. Those genes which do not meet the thresh-
old requirements (usually a number of standard deviations away from
the mean) are pruned and the process is repeated.

For each iteration of training, a perceptron was created with N input
units, where N is the number of genes being trained (therefore, in the first
instance, this is 7129), and one output unit (to give the classification 1 and
0). The network is trained for 10 000 epochs and then the weights anal-
ysed to determine those individual genes which have not contributed to
the 0 and 1 classification. Those genes which are within two standard de-
viations of the mean weight value are considered to be non-contributory
and are removed for the next iteration. Once this had been completed,
481 genes remained and the process was repeated. After one further it-
eration, 39 genes remained and were ranked by weight value. In each of
the iterations of the above process, the perceptron achieved 100 per cent
accuracy on the test set and therefore by progressively selecting smaller
subsets of genes, a good deal of extraneous information in the database
was removed. The final 39 genes were then investigated to determine their
biological significance. This was performed by using the NCBI database

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

190 NEURAL NETWORKS

of gene structure and function4 and some of the genes were found to
have been previously linked with other cancers, or myeloma itself.

Khan et al. (2001) takes a slightly different approach to a similar
problem. The data to which they applied neural networks were gene
expression values of small, round blue cell tumours, so called because
of their appearance in histology. The difficulty was that four separate
diseases, neuroblastoma, rhabdomyosarcoma, non-Hodgkin lymphoma
and the Ewing family of tumours can all give rise to this similar histology.
However, accurate diagnosis is essential as each of the four types responds
differently to treatment. Khan et al. used the gene expression data of 6567
genes from 63 samples, but this was reduced by removing those genes
with a small variation about the mean. It is considered that genes such
as this which do not vary significantly either over time or samples, will
be of little use in classification. In addition to this, principal component
analysis was used to reduce the number of inputs still further. A three-
fold cross-validation process was then conducted which when combined
with 1250 separate runs for each fold yielded a total of 3750 neural
networks. The networks were tested as a committee on classification
and diagnostic problems and found to be highly accurate. In addition to
this, the sensitivity of the neural network to inputs was determined, and
the number of genes further reduced by pruning those that the network
was not using to classify the data. Several experiments showed that the
optimum number of genes was 96 as this was the smallest number of
genes which gave 100 per cent accuracy. After further investigation, it was
found that 61 of these genes (some were eliminated as copies) were related
to the classification, of which 41 had not previously been identified as
related to these diseases.

Conclusion

The above approaches show the value of using simple neural techniques
to discover interactions between variables (in this case gene expression
values) and a classification. The difference between this and other clas-
sification approaches is that the final accuracy of the set of genes is only
one consideration. The neural network approach provides a set of genes
to be investigated as the possible cause for a particular disease. This is
in contrast to the performance on this problem of other techniques such
as decision trees which discover a very small number of genes which are

4 For more information go to: http://www.ncbi.nlm.nih.gov/Database/.

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

BIOINFORMATICS APPLICATIONS 191

often accurate on the training data, but have disappointing accuracy on
test data. The notion is that the number of genes is reduced to the point
that it can be fruitfully analysed (in combination with the weights which
help to indicate the importance of a gene in the classification) but not
oversimplified so that something is missed. This application of a percep-
tron in both these studies clearly shows that even the simplest of the
neural network technologies can be used to good effect in bioinformatics
problems.

Identifying protein subcellular location

Introduction

Protein function is often closely related to its location within the cell and
work undertaken by Cai, Liu and Chou (2002) used a Kohonen neural
network (as described above in the Unsupervised Learning section) to
predict where a protein was located, based on its amino acid make-up. As
the number of discovered proteins increases, determining the subcellular
location of such a protein can provide important clues as to its structure
and function in the cell. The study was short, but it neatly showed the
effectiveness of the Kohonen network in tasks such as this.

Method and results

The authors clearly identified a set of data from Chou and Elrod (1999)
where each of the 2139 proteins was assigned an unambiguous class from
this set: (1) chloroplast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic
reticulum, (5) extracellular, (6) Golgi apparatus, (7) lysosome, (8) mito-
chondria, (9) nucleus, (10) peroxisome, (11) plasma membrane and (12)
vacuole. The proteins themselves were represented by 20 variables which
each represented an amino acid in the makeup of the protein. A Kohonen
network was trained on the dataset and then tested by inputting the test
data and observing which nodes in the feature map was most highly
activated by the test example. Each study was performed with a self-
consistency test (effectively executing the network on the data on which
it was trained), and more significantly, a leave-one-out cross-validation
approach was also used. Using this method the network achieved an
accuracy of almost 80 per cent on the leave-one-out cross-validation
tests. Whilst this is some 2 per cent less than the state-of-the-art (the

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

192 NEURAL NETWORKS

covariant discriminant algorithm in this case), the authors claimed that
this approach was more accurate than other widely-used systems such as
ProtLock. Encouragingly, the approach also achieved similar accuracy
on three independent test datasets which corroborated the leave-one-out
cross-validation findings.

Conclusion

The above example indicates that given a good problem definition, a
neural network approach can be developed to solve a difficult problem
in bioinformatics. The network clearly grasped the relationship between
the amino acid make-up of the protein and its location in the cell. This is
significant because if location can be determined from amino acid make-
up, then an educated guess at function can then be made. Whilst the
results were not optimal when the current best algorithms are considered,
it must be remembered that the Kohonen approach is unsupervised and
therefore must make the class decisions itself rather than being taught
them explicitly. Finally, this research illustrates good use of the cross-
validation procedure (which in this case is of the leave-one-out variety),
as the results on independent test sets were very close to those predicted
in cross-validation.

7.4 Background

Perceptrons, the simplest neural networks, were pioneered by Frank
Rosenblatt (1958) in the late fifties but Minsky and Papert (1969) pub-
lished Perceptrons a book which highlighted the shortcomings of the
perceptron and, crucially, the fact that it could not recreate the XOR
function with just two layers. This deficiency led neural networks to be
practically discarded in favour of symbolic computation techniques for
over 20 years before the seminal publication of Parallel Distributed Pro-
cessing (Rumelhart and McClelland) in 1986 which built on the concept
that a multi-layer perceptron could learn the XOR and a massive vari-
ety of other functions. This discovery revitalized the field and, combined
with a general sense of disappointment in the achievements of symbolic
computation, led to a large number of researchers entering the field of
neural computation. Since then, neural networks have been applied to
countless problems and are especially successful in the areas of financial
forecasting and computer vision to name just two.

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

SUMMARY OF CHAPTER 193

7.5 Summary of chapter

1 Neural networks are a mathematical technique, broadly based on the
functioning of the brain, which can be trained by two methods –
supervised and unsupervised learning.

2 Supervised learning is often used in instances where the required out-
put is known, unsupervised learning is used when this is not possible
or desirable.

3 Once trained, a neural network can be shown new examples of data
and can make predictions based on what it has learnt from the training
data.

4 Neural networks have found application in bioinformatics problems,
from gene expression analysis through to protein location prediction.

7.6 References

Cai, Y-D., Liu, X-J., Chou, K-C. (2002) Artificial neural network model for predicting
protein subcellular location. Computers and Chemistry, 26, 179–182.

Chou, K.C. and Elrod, D.W. (1999) Protein subcellular location prediction. Protein
Eng., 12, 107–118.

Khan, J., Wei, J.S., Ringner, M. et al. (2001) Classification and diagnostic prediction
of cancers using gene expression profiling and artificial neural networks. Nature
Medicine, 7, 673–679.

Kohonen, T. (1990) The self-organizing map. Proceedings of the IEEE, 78, 1464–
1480.

Minsky, M. and Papert, S. (1969) Perceptrons; An Introduction to Computational
Geometry. MIT Press, Cambridge, MA.

Narayanan, A., Keedwell, E., Tatineni, S.S. et al. (2004) Single-layer artificial neural
networks for gene expression analysis. Neurocomputing, 61, 217–240.

Rosenblatt, F. (1958) The perception: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65, 386–408.

Rumelhart, D.E. and McClelland, J.L. (1986) Parallel Distributed Processing: Vol-
ume 1 Foundations. The Massachusetts Institute of Technology.

JWBK023-07 JWBK023-Keedwell March 31, 2005 3:2 Char Count= 0

194

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

8
Genetic Algorithms

8.1 Single-objective genetic
algorithms -- method

‘Genetic algorithms’, ‘evolutionary computation’ and many of the terms
described in this chapter have distinct biological overtones. It is worth
stating at the outset that the genetic algorithm (GA) is a search and op-
timization tool which can be used to solve bioinformatics problems, not
a metaphor for how genetic operations are carried out in the real world.
The GA is in fact inspired by the mechanisms of evolution and these
have proved useful in a variety of search and optimization domains.
Genetic algorithms use principles of evolution such as reproduction,
selection, crossover and mutation (collectively known as genetic oper-
ators) to discover better solutions to a problem given a random starting
set of solutions. Each of these operators acts on one or more chromo-
somes (solutions) in the population (a set of solutions) to yield a set of
new solutions which is known as the next generation. The algorithm is
iterative, and therefore these operators act upon the population many
times, moving the algorithm from one generation to the next.

Genetic algorithms are now widely applied in engineering and scien-
tific disciplines. Generally, this is due to the fact that they can be readily
adapted to new problems, they are efficient with respect to other search
algorithms, and also they are less prone to descending into local min-
ima/maxima. A problem with many standard search algorithms, such as
hill-climbing (Chapter 3), is that they often find solutions in the search
space which are locally – but not globally – optimum when the space is

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd

195

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

196 GENETIC ALGORITHMS

not smooth (i.e. in most real-world problems). Genetic algorithms, due
to their stochastic and population-based nature, are able to avoid this
behaviour for the most part. They have therefore found favour in a large
number of domains where traditional techniques would require too much
computation to produce an optimal solution and where a near-optimal
one will suffice.

Chromosome

A good deal of the success of the GA is based on its flexibility. The
problem- independent nature of the GA is the reason it can be applied to
so many domains without alteration of the algorithm itself. This prob-
lem independence is established through the use of a chromosome and
objective function. The chromosome is a genetic representation of a sin-
gle solution to the problem and its performance at solving that problem
is evaluated by a function which relates the chromosome variables to the
problem at hand. Figure 8.1 shows a chromosome representation of a
problem.

To evaluate the chromosome, the objective function takes the chromo-
some (which is usually represented in some numerical or binary format),
decodes it according to a problem specific decoding scheme and then
computes the fitness of the solution which is then passed back to the
algorithm. The most important skill in applying a GA to a problem is
to be able to correctly map the problem to a set of integers or binary
variables and accurately compute a fitness so that it reflects the problem
at hand. Later in this chapter various methods for accomplishing this for
bioinformatics problems will be discussed.

Operators

Once a random population of solutions has been created, the genetic op-
erators that act on the population of solutions must drive the population

Chromosome

FitnessAllele

1 3 5 2 Objective function

Figure 8.1 Relationship between the chromosome, objective function and fitness

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

SINGLE-OBJECTIVE GENETIC ALGORITHMS – METHOD 197

to find new, more optimal solutions. The most important of these are the
selection, mutation and crossover procedures that determine which indi-
viduals survive to the next generation. In the GA, a number of individuals
(normally two at a time) are selected from the current population, their
genetic material is then combined together to form a number (again,
normally two) of new individuals in a process known as crossover. A
random mutation can also take place to alter the genetic make-up of
these individuals. This process is repeated until the next generation is
full, whereupon each individual is evaluated by the objective function
and the process is repeated. The following sections describe some of the
most popular operators used in GA applications.

Selection

As with other search algorithms, the GA needs to remember good solu-
tions and discard bad ones if it is to make progress towards the optimum.
A very simple selector would be to select the top N chromosomes from
each population for progression to the next population. This would work
up to a point, but any solutions which have very high fitness will always
make it through to the next population. This concept is known as elitism
and will be covered later in this chapter. However, to make sure that the
GA doesn’t converge on a set of solutions too quickly, a random element
is usually introduced into the selection procedure. The following section
describes the roulette wheel selector, which is one of the most popular
procedures along with the tournament selector.

Roulette wheel selector

This selector works by adding all the fitness values of chromosomes in the
population together to create a ‘virtual roulette wheel’. This wheel is then
spun to see which of the individuals is chosen for selection into the next
generation. As can be seen by Figure 8.2, if the wheel is ‘spun’ there is a
much greater chance of solution with higher fitness being selected over
the other solutions in the ‘roulette wheel’. This affords filter solutions
a better chance of being kept in the next generation than the others.
However, an important point is that there is still a chance that any of
the solutions can be selected, as the selection procedure depends on a
random number. This method allows the selection to be biased towards

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

198 GENETIC ALGORITHMS

Solution 1
Fitness � 0.25

Solution 4
Fitness � 0.5

Solution 2
Fitness
� 0.125

Solution 3
Fitness
� 0.125

Figure 8.2 Roulette wheel selection: the total fitness of a population of chromo-
somes can be represented as a wheel, where the fitness of an individual
chromosome is represented an appropriate ‘slice’ of the wheel; the higher
the fitness value, the larger the portion of wheel occupied by that chro-
mosome

those solutions that solve the problem well, but the stochastic element of
selection ensures that diversity in the population is maintained.

Tournament selection

Tournament selection has a similar mix of randomness but contains a
bias towards fitter individuals. In tournament selection, a number of
chromosomes (normally 2) are selected from the population and their
fitness compared. Quite simply, the chromosome with greatest fitness is
selected for entry to the next generation. The random selection of individ-
uals to participate in the tournament means that two poorly performing
solutions could be selected at once. In this situation, even though the
solutions are poor with respect to the rest of the population, the best
individual of the two will be selected. It is in this way that solutions with
low fitness can still be selected by the tournament selector. This selection
process ensures that, over the course of a number of generations, fit in-
dividuals are more likely to be selected for entry to the next generation
and this therefore preserves information discovered in previous genera-
tions. Once selected, solutions undergo crossover and mutation, which
are described in the next section.

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

SINGLE-OBJECTIVE GENETIC ALGORITHMS – METHOD 199

Cross over

The cross over operator is designed so that two ‘parent’ solutions can
combine information to produce two new ‘offspring’ solutions that are
different, but related to the original solutions. Again, there are a number
of methods of achieving this and two of the most common are described
here, single point and uniform crossover.

Single point crossover

Single point crossover is the simplest crossover and takes two chromo-
somes, chooses a single random point on each chromosome and cuts the
two chromosomes at this point. The two parts of the chromosome are
then recombined to form two new individuals which share some of the
information of the parents, but are separate solutions in their own right.
Figure 8.3 illustrates this process.

Uniform crossover

Difficulties can arise when using single point crossover, since genes to-
wards the centre of the chromosome are perturbed more often than those
at the edges of the chromosome. To overcome this, uniform crossover
takes multiple random points on each chromosome and creates a ‘mask’
through which the chromosomes pass. Figure 8.4 shows the execution of

1 1 1 1 1 1

2

Cross-over point

Parent 1

Parent 2 2 2 2 2 2

2 2 1 1 1 1

1

Offspring 1

Offspring 2 1 2 2 2 2

1 1 1 1 1 1

2

Cross-over
operation

2 2 2 2 2

Figure 8.3 Single point cross-over

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

200 GENETIC ALGORITHMS

1 1 1 1 1 1

2 2 2 2 2 2

1 2 1 2 1 2

2 1 2 1 2 1

Figure 8.4 Uniform cross-over

uniform crossover where two chromosomes pass through a filter, where
the grey squares indicate that a ‘swap’ of alleles takes place and the
white squares indicate that the values pass through untouched. Uniform
crossover ensures that each gene on the chromosome has an equal chance
of being crossed over and represents a crossover without positional bias.

Crossover operators therefore ensure that material taken from two
selected parents is merged in such a way that the information that con-
tributed to the parents fitness will be kept in the offspring. The crossover
operator is stochastic as the crossover point is selected at random. One
possible difficulty is that, for certain types of problem, crossover may
result in a chromosome that is not permitted for the task at hand. For
instance, if some allelic values towards the end of a chromosome depend
on allelic values earlier in the chromosome (such as, for instance, a route
finding problem where only one occurrence of a city or node in a map
can occur in a chromosome), crossover will need to be supplemented
by some check procedure that ensures that the results of crossover still
make sense. Some post crossover procedure may be required to mend the
results of crossover so that solutions still fall in the space of acceptable
solutions. Once selection and crossover have taken place, the solutions
are mutated.

Mutation

Selection and crossover ensure that the best individuals have the greatest
chance of progressing into the next population and can share their in-
formation to give the best possible solutions. Both processes include an
element of random behaviour but a further random element is required to
complete the GA, known as mutation. Without the mutation operator,

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

SINGLE-OBJECTIVE GENETIC ALGORITHMS – METHOD 201

the GA is only capable of manipulating the genetic material that was
present in the initial population. Mutators generally are not as compli-
cated as crossover and mutation; they tend to just choose a random point
on the chromosome and perturb this allele either completely randomly
or by some given amount. For instance, one possible mutation operation
is to take a chromosome, such as the second offspring in Figure 8.3, and
randomly ‘mutate’ one allele by adding a value in the range 1 to 3. If the
second allele of Offspring 2 is chosen at random for mutation, it may
change from 1 to 4, resulting in a chromosome consisting of allele values
‘1 4 2 2 2 2’. Mutation needs to be coupled with some check that the final
mutated value is not out of bounds for a particular allele. For instance,
if the possible range of values for allele 2 is only 1 to 3, the value 4 for
this allele cannot be allowed.

Generational vs. steady state

The final element of the GA is how the algorithm progresses from one
generation to the next. There are two ways of achieving this: a genera-
tional method, where a new population is generated at every iteration,
and a steady-state method where the population stays largely the same
but new solutions are added to it. Figure 8.5 shows a generational genetic
algorithm, where a new population is created every generation.

The steady-state genetic algorithm shown in Figure 8.6 selects a num-
ber of individuals from the population, applies the reproduction, cross-
over and mutation operators to them and then reinserts them into the
population using a variety of criteria. These replacement criteria usu-
ally take the form of replacing the weaker (or weakest) solutions in the
population and therefore increasing the fitness of the population in this
way.

Chromosome 1

Generation 1

Chromosome 2

.

.

.

.

Chromosome N

Chromosome 1

Generation 2

Chromosome 2

.

.

.

.

Chromosome N

Reproduction,
cross-over and
mutation

Figure 8.5 Generational genetic algorithm

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

202 GENETIC ALGORITHMS

Chromosome 1

Chromosome 2

Chromosome N

Cross-over and
mutation

.

.

.

.
Replacement

Selection

Figure 8.6 Steady-state genetic algorithm

By using these simple biologically inspired operators, a well-conceived
representation of the problem and an accurate objective function, the GA
can solve a vast array of search and optimization problems, quickly and
efficiently.

8.2 Single-objective genetic
algorithms -- example

Introduction

The best way to understand the GA is to begin with a simple example
of its execution. The following section describes a very simple example
of a GA problem. Given the function, f (x) = x2, we want to get the GA
to maximize the function where x will be the sum of four decision vari-
ables which will range from −10 to +10. That is, the task is to discover
what the four values making up x must be for the function to return its
maximum positive value, given that x is squared. This problem has two
global optima (one where each decision variable is −10 and one where
each is +10). This simple problem is representative of many search and
optimization problems where there exists more than one answer to the
problem and demonstrates the capability of the algorithm to discover
global optima. A non-genetic algorithm approach to this problem could
consist of enumerating all possible values for the four decision variables,
summing them and squaring the answer in turn, and storing the result.
At the end of this enumeration (or during the enumeration for added effi-
ciency), that combination of four values that allows the function to return
the maximum value is discovered. Since there are 20 possible values for
each variable (ranging from −10 to +10), the full enumeration will need

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

SINGLE-OBJECTIVE GENETIC ALGORITHMS – EXAMPLE 203

to examine 204 different combinations of values. A GA may be able to
identify the solution more efficiently than this, even for this simple task.

Execution

Using a random number generator, a set of 10 individuals (chromosomes)
is created, each with four decision variables (DVs) ranging from −10 to
+10. These decision variables are summed and then squared (as specified
by the function) to give a fitness value as follows.

DV1 DV2 DV3 DV4 Sum Fitness

Chrom 1 −6 −6 −8 −1 −21 441
Chrom 2 −4 1 6 −10 −7 49
Chrom 3 2 −10 1 2 −5 25
Chrom 4 −10 −4 −3 −7 −24 576
Chrom 5 0 −7 5 8 6 36
Chrom 6 −2 3 8 −9 0 0
Chrom 7 6 2 4 3 15 225
Chrom 8 −2 −1 −9 5 −7 49
Chrom 9 4 −7 7 −5 −1 1
Chrom 10 1 −4 −7 −9 −19 361

Average 176.3

If by chance chromosomes 4 and 10 were selected and crossed over at
point 2, the resulting children would be created

Child 1 −10 −4 −7 −9 −30 900

and

Child 2 1 −4 −3 −7 −13 169

A mutation can then occur changing the variable 1 in child 2 to a 3 which
gives:

Child 2 3 −4 −3 −7 −11 121

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

204 GENETIC ALGORITHMS

By using a ‘weakest’ replacement strategy, Chromosome 6 is replaced by
Child 1 and Chromosome 9 replaced by Child 2. The population now
looks like this.

Allele1 Allele2 Allele3 Allele4 Sum Fitness

Chrom 1 −6 −6 −8 −1 −21 441
Chrom 2 −4 1 6 −10 −7 49
Chrom 3 2 −10 1 2 −5 25
Chrom 4 −10 −4 −3 −7 −24 576
Chrom 5 0 −7 5 8 6 36
Child 1 −10 −4 −7 −9 −30 900
Chrom 7 6 2 4 3 15 225
Chrom 8 −2 −1 −9 5 −7 49
Child 2 3 −4 −3 −7 −11 121
Chrom 10 1 −4 −7 −9 −19 361

Average 278.3

By using just one generation of the GA, the average fitness of the popu-
lation has risen from 176 to 278. In addition to this, an individual with
a fitness of 900 has been created, by far the highest from the two pop-
ulations and also much higher than that of its parents. This example
illustrates two key concepts of the GA.

1 By using just the genetic operators we have discovered a new best
solution (of fitness 900) and improved the overall fitness of the pop-
ulation by replacing poorly performing solutions.

2 Not every move is good. By mutating Child 2’s first allele from 1 to
3, we have actually decreased the fitness of that chromosome. This
happens frequently in genetic algorithms and appears to be counter-
intuitive, but the increased value of 3 might be of benefit if that chro-
mosome is crossed-over in a later generation. The mutation is only
counter-productive because of the make-up of the remainder of the
chromosome. In itself the move from 1 to 3 for a single gene represents
an improvement as it is closer to the +10 extremity. The operators
are designed to increase the likelihood of fit individuals going into the
next generation, not guarantee it.

After several further generations, the GA will be able to converge on a
set of very good solutions to this task. While this task may appear trivial,
that is because the function is simple. If the function being maximized

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

MULTI-OBJECTIVE GENETIC ALGORITHMS – METHOD 205

consisted of several dozen variables ranging from −1000 to +1000, and
if more than a simple summing and squaring of the variable values is
required, a full enumeration will not be possible and the GA approach
will be more attractive.

8.3 Multi-objective genetic
algorithms -- method

Introduction

The single-objective GA is immensely useful when a single, near-optimal
solution to a problem is needed. However, many science and engineering
applications consist of objectives where there are conflicts. For instance,
when designing a structure such as an aircraft, there are the conflicting
objectives of strength and weight, where extra bracing in the structure
allows it to be stronger but heavier and therefore less efficient. Genetic
algorithms, with some modifications, can be used to optimize problems
with more than one objective, creating a multi-objective GA. Whilst such
applications in bioinformatics are currently limited, multi-objective al-
gorithms are likely to become widely used in the discipline in the near
future due to the need to balance conflicting requirements, such as protein
function with protein folding.

The main similarities between single and multi-objective GAs are that
they still use a population of individuals and crossover, mutation and se-
lection operators, although some of these can be a little different in multi-
objective algorithms. The main difference is the way that the performance
of each individual is determined. In the single objective case, fitness is the
only criterion by which solutions are compared. In multi-objective algo-
rithms, this is replaced by the notion of dominance. Since each individual
solution is evaluated on a number of objectives (for instance, weight and
strength for a particular aircraft design), there is no theoretical limit to
the number of objectives used. To compare individual solutions, a new
measure known as dominance is used to rate each solution.

Dominance

One solution is said to dominate another if it is as good or better than
that solution in all objectives (this concept is known as strong dominance
in the literature). The following example shows how dominance works.

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

206 GENETIC ALGORITHMS

If three designs exist for an aircraft, we want to discover the design
with maximum strength and minimum weight. Given the following three
solutions, the choice is difficult to make.

Solution Weight Strength

1 45 2.2
2 30 1.5
3 25 1.0

A decrease in weight is accompanied by a decrease in strength and
therefore each of these solutions does not dominate any other. However,
if a fourth solution is included which has a weight of 22 and a strength of
2.5, this solution dominates each of the first three solutions. This fourth
solution dominates the other three because it is at least as good in every
dimension as the other solutions and better in at least one this is shown in
Figure 8.7. A solution is said to be non-dominated when no other so-
lution in the current set dominates it. This principle of dominance of
solutions distinguishes multi-objective algorithms from single-objective
algorithms.

The principle of dominance can be extended to any number of objec-
tives and gives a clear indication as to which solutions are better in the
search space. The principle is then used to rank the set of solutions ac-
cording to the number of times they are dominated by other solutions in
the population. This ranking differentiates between the solutions in the
population and allows modified selection operators to work. Figure 8.8
shows an extended example of the aircraft design problem where the
ranking procedure can be seen more easily. The rank of a solution is
computed as the number of solutions in the population which dominate
that solution. The best solution in the example has a rank of zero, which

3

2.5

2

1.5

St
re

ng
th

1

0.5

0
10 20

Weight

30 40 50

First solutions
New solutions

Figure 8.7 Aircraft design example

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

APPLICATION GUIDELINES 207

3

2.5

2

1.5

St
re

ng
th

1

0.5

0
10 20

Weight
30 40 50

Rank 2
Rank 1
Rank 0

Figure 8.8 Extended aircraft design example

means that in the current population, it is the best (least-dominated)
solution. There is often more than one solution with rank zero and this
is known as the Pareto-front or Pareto-surface which represents the best
solutions from an optimization run.

Multi-objective GAs perform operations on the population by using
the rank of the individuals rather than the fitness. This approach means
that, as the optimization progresses, the Pareto-front moves towards the
optimum trade-off between the variables. This is seen in Figure 8.8 –
the algorithm will attempt to move the points towards the top-left hand
corner where maximum strength and minimum weight lie. Aside from
optimality, the multi-objective algorithm tries to find a number of evenly-
spaced solutions on the pareto-front. This is to provide the maximum
amount of choice in the selection of a solution for its final purpose.
Solutions that are tightly clustered together, and differ only marginally in
their objective values, do not represent a good basis for solution selection.
To summarize, the multi-objective GA, by means of simulated evolution,
aims to find a pareto-set of well-spaced solutions that offer the optimal
trade-off between two or more variables. This approach has been found
to be very successful in many scientific, engineering and financial circles
where the decision-making process has more than one consequence for
a given set of actions.

8.4 Application guidelines

Introduction

Genetic algorithms have much to offer bioinformatics as they are cur-
rently one of the most efficient ways to search large problem spaces.
They are regularly applied to problems which have thousands of decision

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

208 GENETIC ALGORITHMS

variables and huge combinatorial search spaces in science and engineer-
ing. However, the most important attribute of the GA is its flexibility.
By encoding the variables of the problem as bit strings or integers and
using only an objective function, the GA can be applied to a number
of problems in bioinformatics. Whilst they are immensely flexible, there
are a number of conditions which should be met before applying the
algorithm to a problem.

1 The problem should be large. If the problem can be solved with a
traditional hill-climbing or local search algorithm or even a full enu-
meration in realistic time, then a GA may not be the most efficient
method due to its stochastic nature.

2 An objective function should be constructed which relates the deci-
sion variables of the problem and assigns a ‘fitness’ to the solution
that determines how good that solution is. Ideally this function will
be as monotonic as possible (i.e. it will vary consistently with deci-
sion variable values), functions which vary wildly with respect to the
decision variables are very difficult to optimize by using a GA.

3 The number and severity of constraints on the solutions should be
small. A number of problems require that only a small number of the
possible solutions can be considered as feasible. When this occurs,
there are methods to implement constraints in genetic algorithms,
but on the whole, soft constraints which penalize the fitness of solu-
tions if they are outside the required bounds are generally preferable.
If there are soft constraints on a number of variables in the fitness
function, then a multi-objective approach should be considered as an
alternative.

Representation

The problem being solved must be converted to a format that can be
optimized with the GA. The ‘representation’ to the GA is very important
as can determine how well the algorithm performs on the problem. Ge-
netic algorithms can use a variety of gene types (integers, real values and
bit strings) that represent variables in the problem. The most traditional
approach is to use a set of bit strings to represent decision variables in the
problem, since they are known to perform well with standard crossover
and mutation operators. Other gene types require special crossover
and mutation operators, but they can be used as effective easier-to-use

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

APPLICATION GUIDELINES 209

representations. The issue here is between ‘genotype’ and ‘phenotype’ of
chromosomes. The closer the representation of a chromosome is to the
problem, the easier the chromosome is to interpret. That is, the geno-
type is the phenotype in the case of the simple single-objective function
described earlier, where the alleles contained the actual integer values
between −10 and +10. However, if these values were represented as bits
(so, for example, seven is represented in a 10-bit allele as ‘0000000111’,
some mapping must be made between the chromosomes genotype (bit
representations in the chromosome) and gene phenotype (its actual in-
terpretation). Bit representation allows for more flexible mutation and
crossover. A chromosome containing four alleles of 10 bits each has 40
mutation and 39 crossover positions as opposed to only four mutation
and three crossover positions if integer representation is used. In other
words, complex genotype representations will require more interpreta-
tion with regard to what they actually mean (their phenotype) in the do-
main, but crossover will be more effective on representations of this type.

Algorithm selection

Choices to be made with regard to genetic algorithms are largely down
to the parameter settings and selection of operators, as described in pre-
vious sections. The user also needs to determine whether a steady-state
or generational approach is taken. The steady-state approach is faster, as
fewer objective function evaluations have to be completed per iteration,
but the results may not be as good as a generational run.

Multi-objective genetic algorithms can be separated into two distinct
types, the elitist and non-elitist algorithms. Elitism ensures that the very
best solutions in one generation progress to the next, a concept which
does not normally occur as the selection procedure can choose to select
any solution from the population. Elitism is useful for multi-objective
problems as it helps to preserve the Pareto-front during the optimization.
Elitist genetic algorithms such as the Nondominated Sorting Genetic Al-
gorithm 2 (NSGA-II) (Deb et al., 2000) are currently the state-of-the-art
and to a certain extent has superseded the original Multi-objective Ge-
netic Algorithm (MOGA) developed by Fonseca and Fleming (1995).

Implementation

While implementing a GA in a programming language is a good way to
learn the intricacies of the algorithm, there are a number of sources for

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

210 GENETIC ALGORITHMS

libraries and applications that allow easy access to GA technology. Ge-
netic algorithms are increasing in popularity and there are a vast number
of implementations of GA software on the Internet in almost every mod-
ern programming language. The variety, quality and number of features
vary greatly, so selecting the correct one for the needs of the problem can
be crucial. Often, a good free or shareware implementation can be as
effective as an expensive commercial product. GALib1 from MIT in the
USA is a particularly good example of a C++ version of a freeware GA
library. Off-the-shelf products such as ‘Evolver’ from Palisade2 also allow
GA techniques to be used in the user-friendly environment of Microsoft
Excel. Therefore there are a number of software options for individuals
wishing to apply GAs to bioinformatics problems.

8.5 Genetic algorithms -- bioinformatics
applications

Introduction

With bioinformatics being a relatively new science and genetic algorithms
only finding popularity relatively recently, the number of applications of
GAs to bioinformatics currently remains relatively small. A large por-
tion of the work has concentrated on using GAs to process microarray
data. Specifically, they have been used to ‘reverse engineer’ regulatory
networks and also, in conjunction with neural networks, as a method of
data mining gene expression data. The following sections describe the
most current research into these topics.

Reverse engineering of regulatory networks

Introduction

Gene regulatory networks are described in detail in Chapter 2, but the
following sections show why GAs may be required for this particular
problem. Gene expression or microarray data allows biologists unprece-
dented access to the workings of genes within a cell, and the expression
values of many thousands of genes can be recorded simultaneously for

1 More information can be found at http://lancet.mit.edu/ga/.
2 More information can be found at http://www.palisade.com.

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

GENETIC ALGORITHMS – BIOINFORMATICS APPLICATIONS 211

a particular sample. This process can be applied repeatedly for a sam-
ple placed under stimuli, which then yields a trace of genetic activity
for a number of genes over time. It is this trace and the interactions
between genes over time which is of interest for a number of reasons.
First, genes involved with cellular processes and disease are not being
expressed in a vacuum; they are constantly interacting with each other
in the cell and the answers to many of the biological questions posed by
microarrays will undoubtedly lie in these interactions. Second, because
of these interactions, taking a single expression measurement at a partic-
ular moment in time as the basis for a study will not necessarily yield the
required results, since the gene expression of individuals is a dynamic,
not static phenomenon. The measurement of an individual sample over
time provides us with the raw information required to decipher which
genes are subsequently affecting the expression levels of other genes or
even themselves. This process is not an exact science; genes expressed at
one timestep have an indirect affect on others through protein produc-
tion and therefore it is difficult to determine the way in which these genes
interact. Add to this the fact that there could be anywhere from 100 to
30 000 genes measured over time, each with the potential to interact,
and the problem becomes very difficult indeed. Essentially the desired
outcome is for the GA to arrive at a network of genetic interactions be-
tween genes in adjacent timesteps. This can be best visualized by a set of
rules, for instance:

If gene X at Time0 is ON THEN gene Y at Time1 is OFF

This represents one connection of a very simple network where the gene
expression values are represented as ‘absent’ and ‘present’, to use the
Affymetrix3 nomenclature, and only one gene affects one other. What
is important is that the rule has an element (the antecedent) which re-
lates a time in the past to a subsequent timestep (the consequent). This
rule structure must be used if a causal model is to be discovered through
temporal regulation. When rules have been discovered for every gene in
a particular experiment, a network can be created to link genes in one
timestep to the next. This network can be said to have been ‘reverse engi-
neered’ from the data. That is, the actual processes of genetic interaction
have been extracted from biological observation and data in the form
of a network. Once a network has been extracted, this constitutes a hy-
pothesis concerning the routes that can be taken through the network

3 For more information see http://www.affymetrix.com.

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

212 GENETIC ALGORITHMS

so that the activity of genes in a subsequent timestep can be said to be
explained by the activity of genes in a previous timestep.

Computational Complexity

This problem, however, becomes more complicated when considering
true genetic interactivity as a number of genes can affect any number
of genes in the next timestep, i.e. not all interactions are one-to-one.
This is where GA approaches can be applied, as the number of possible
networks is huge with respect to the number of genes. The fact that
genes can act in combination to affect combinations of genes at the next
timestep means that the problem requires the algorithm to determine a
combination of N genes from the total number for each influenced gene.
The following expression determines the number of combinations when
choosing k individuals from a total number N

N!
k!(N − k)!

(8.1)

So all the combinations of selecting five (k) elements from a total of 10 (N)
is 252. That is, if the data consists of measurements of 10 genes and we as-
sume that only five genes at one timestep affect a gene at the next timestep,
there are 252 possible combinations. Select five from 100, though, and
the number of possible combinations rises to 75 287 520; select five from
10 000 (a typical gene expression experiment) and the numbers become
unmanageable. The total number of solutions cannot be searched exhaus-
tively to guarantee optimality. This problem is therefore very difficult to
solve with traditional methods and this is where GAs can be used.

Graph and matrix representations

The gene regulatory network can be represented as a set of weights
connecting genes in one timestep with genes in another. This matrix of
weighted connections determines the effect that each gene in one timestep
has on another gene in the next timestep. Figure 8.9 shows a typical ge-
netic network and its weight matrix representation (see also Table 3.1).

It is in this way that a matrix can represent a gene regulatory network.
However, Figure 8.9 shows two connections into G4, from G2 and G3.

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

GENETIC ALGORITHMS – BIOINFORMATICS APPLICATIONS 213

G1

1.42

–1.10

–0.07

2.91

2.62

G1

1.42

– – – – – –

– – – –

– –

– –

– –

– –– –

– –

G1

G2

G3

G4

G2

–0.07

G3

2.62

2.91

G4

–1.10
G4

G2

G3

Figure 8.9 Graph and matrix representation of a gene regulatory network, where
columns specify the start point and rows the end point; so, for instance,
G4 influences G1 with value –1.10 (a negative gene effect)

The question of how these values can be combined to give the correct
expression value of G4 remains. One approach is due to Weaver et al.
(1999), who combined the values together and passed them through the
sigmoid function (see the Chapter 7 for more on this function) to give
the output for G4. Therefore, any algorithm wishing to discover a gene
regulatory network must discover the set of weights that connect genes
in one timestep to those in the next. These weights, combined with the
expression values of the incoming genes and passed through the sigmoid
function, give the required expression levels for the output gene.

Evolutionary approaches to the reverse engineering problem

A succession of papers (Ando and Iba, 2001a, 2001b) have described
methods of using GAs to extract the gene regulatory networks from
gene expression data. Mostly, they used the approach detailed above by
Weaver, et al. (1999) as the model for forward activation and reverse
engineering their gene regulatory networks. The GA is applied to the
problem in a number of ways, in adding noise to the reverse engineering
process for example, but the results most often reported refer to the
following representation of the network to the GA. The chromosome of
the GA is encoded as a matrix of floating point values which correspond
to the weight matrix between gene timesteps (as in Figure 8.9). The fitness
function for the GA is calculated as the sum, over all timesteps, of the
difference between the predicted and actual level of activation for the gene
expression. The GA is then allowed to optimize this matrix of weights
for these criteria.

Another objective which is factored into the fitness function is that
sparse matrices are required in this problem to remove the possibility of

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

214 GENETIC ALGORITHMS

all genes having an effect on all other genes. A measure of the number
of zero weights present in the chromosome is added so an individual
solution fitness is based both on its solution and number of zeroes in the
solution. The advantages of this process are that the GA uses Weaver
et al.’s established method of gene regulatory network modelling and
also makes use of the reverse engineering process to a certain extent. The
results on artificial data are encouraging and suggest that the GA should
be able to extract matrix-type gene regulatory networks from this type
of data.

There are, however, some difficulties with this approach. For instance,
the chromosome has to evolve the entire weight matrix for a set of genes
and so the chromosome will consist of a large number of floating point
values. Although this GA approach is good for modest numbers of genes,
the number of interactions required in the matrix quickly become unman-
ageable. A network of 1000 genes possesses 10002 possible connections
and therefore the complexity of generating networks of this size for each
individual in the population is too great. The GA has no theoretical lim-
its on the size of the chromosome that can be optimized, but there are
often practical limits concerning the memory of the computer and the
time taken to evaluate each chromosome on the data. Also, whilst any
gene in the network can effect any other, the vast majority do not. Bio-
logical experimentation (Thieffry et al., 1998) and chaos theory (Kauff-
man, 1996) suggest that the number of genes which can act together to
alter the expression values of another gene (the K-value) is small (less
than six). Therefore the problem size for 1000 genes is closer to 6∗1000
than 1000∗1000. To take advantage of this fact, a modified GA exam-
ple (Keedwell and Narayanan, 2003) uses the GA to discover one single
column of the matrix at a time. The genes affecting a gene in the next
timestep are limited by the K-value, so only a handful of genes must
be discovered for each optimization. The chromosome therefore has to
change from a matrix representation to one which specifies the incoming
gene and its weight, as shown in Figure 8.10. The GA is then run for each
output gene, building up the network step by step. This representation

1

Position Weight

0.24 23 1.35 101 0.01

Figure 8.10 Gene and weight pairs chromosome representation of a gene regulatory
network

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

GENETIC ALGORITHMS – BIOINFORMATICS APPLICATIONS 215

reduces the computational complexity of the problem and also breaks the
problem into smaller pieces, thereby allowing each element to be solved
more quickly.

This is a good illustration of the importance of a good representation
for solving a task with a GA. By using the known biological constraints of
the problem, and by making the problem to be solved by the GA simpler,
the GA can be applied to real-world gene expression data in addition to
artificial problems.

Multiple sequence alignment

The task of comparing sequences is at the heart of bioinformatics. By
comparing sequences of nucleic or amino acids, the similarity in structure
between genes and proteins can be discovered. The ability to match two
or more sequences according to the elements within those sequences is
an extremely important one in bioinformatics as it allows new genes
and proteins to be accurately compared with existing ones for which the
structure and function are known. The comparison of these sequences
can help in the discovery of similar genes across species and also help
determine the phylogeny of those species. As pointed out in Chapter 2, the
comparison of even two sequences is not simple. A very simple method
would be to write down both sequences and compare those elements
which are similar and those which are not. For instance:

A C G C
A T G C
∗ ∗ ∗

The ∗ character indicates a matched column between the two sequences.
However, if one character is inserted or deleted, the sequence alignment
no longer exists and two highly similar sequences have no matches.

A C G C −
− A T G C

The task is to determine the optimal alignment of these sequences by cor-
rectly inserting gaps to realign the sequences. Whilst the problem seems
relatively trivial when only four bases and one gap is considered, the
task becomes very difficult when the number of bases in a typical gene
is taken into account. There are a number of algorithms which perform
very well on a problem such as this with just two sequences, but multiple

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

216 GENETIC ALGORITHMS

sequence alignment requires this process to occur for a large number of
sequences. It is for this problem that researchers have turned to intelli-
gent methods to perform this sequence alignment. Genetic algorithms in
particular have been successful in this domain, pioneered by the Sequence
Alignment Genetic Algorithm (SAGA) (Notredame and Higgins, 1996).

The GA approach makes use of a population of alignments where each
alignment is assessed as to its performance in terms of the number of
columns which match and the number of gaps which are introduced into
the sequences. The genetic algorithm itself is modified from a standard
algorithm in that it uses an elitist approach where 50 per cent of the best
performing alignments are copied to the next generation. 22 problem-
specific operators are also used. The 22 include 19 mutation operators
and three cross-over operators which have to be specifically designed to
modify the alignment of sequences in a meaningful way. The one-point
cross-over operator, for instance, takes two separate alignments, makes a
cut at a random point in the first alignment sequence and cuts the second
alignment at such a point that every sequence is cut adjacent to the same
symbol as in the first alignment. The left side of one parent is then spliced
to the right side of the other and vice versa, and then gaps are added to
ensure alignment consistency. The results taken from Notredame and
Higgins (1996) show that the genetic algorithm discovered alignments
that performed as well as or better than two established methods, MSA
and Clustal.

The GA approach broadly described here provides a good example of
the modifications that can be made to an algorithm to make use of an
evolutionary approach. The representation of the problem is reasonably
fixed, alignments can only be made by inserting gaps in a sequence, and
the cross-over and mutation operators had to be modified accordingly.
It also shows a good application of GAs to a fundamental problem in
bioinformatics.

Conclusion

This section has shown a GA applied to two problems taken from bioin-
formatics. Each example highlights an important aspect of applying GAs
to bioinformatics, namely that the correct representation and objective
function can yield a very successful application. These examples also il-
lustrate the diversity of applications of GAs, and they remain one of the
best performing as well as the most flexible of the AI algorithms used for
bioinformatics.

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

REFERENCES AND FURTHER READING 217

8.6 Summary of chapter

1 Genetic algorithms (GAs) make use of biologically inspired operators
of selection, cross-over and mutation to move from one solution to
the next, and are an efficient method of searching large spaces that
are not amenable to traditional algorithms.

2 Multi-objective GAs have yet to be widely exploited in bioinformatics,
but offer the researcher a set of possible solutions rather than just one
and are based on the principle of dominance.

3 Genetic algorithms have been used for a number of problems in bioin-
formatics including the reverse engineering problem and sequence
alignment.

4 The single most important element of applying a GA to a problem, re-
gardless of domain, is to ensure that the representation of the problem
to the algorithm is as close to the real problem as possible.

8.7 References and further reading

Ando, S. and Iba, H. (2001a) Inference of gene regulatory model by genetic algo-
rithms, in Proceedings of Conference on Evolutionary Computation 2001, pp.
712–719.

Ando, S. and Iba, H. (2001b) The matrix modeling of gene regulatory networks –
reverse engineering by genetic algorithms, in Proceedings of Atlantic Symposium
on Computational Biology, and Genome Information Systems and Technology
2001.

Deb. K., Pratap, A., Agarwal, S. et al. (2000) A fast and elitist multi-objective genetic
algorithm – NSGA-II KanGAL Report Number 2000001.

Goldberg, D.E. (1989) Genetic Algorithms in Search Optimization and Machine
Learning. Addison Wesley.

Fogel, G.B. and Corne, D.W. (eds) (2003) Evolutionary Computation in Bioinfor-
matics, Morgan Kaufmann.

Fonseca, C.M. and Fleming, P.J. (1995) An overview of evolutionary algorithms in
multiobjective optimisation. Evolutionary Computation, 3(1), 1–16.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. Ann Arbor, The
University of Michigan Press.

Kauffman, S. (1996) At Home in the Universe: The Search for Laws of Self-
Organization and Complexity. Penguin Books.

Keedwell, E.C. and Narayanan, A. (2003) Genetic algorithms for gene expression
analysis. Applications of Evolutionary Computing LNCS 2611 (eds. Gunther

JWBK023-08 JWBK023-Keedwell March 28, 2005 14:21 Char Count= 0

218 GENETIC ALGORITHMS

Raidl et al.) Proceedings of EvoBIO2003 1st European Workshop on Evolutionary
Bioinformatics, pp. 76–86.

Notredame, C. and Higgins, D.H. (1996) SAGA: Sequence alignment by genetic
algorithm. Nucleic Acids Res., 24, 1515–24.

Thieffry, D., Huerta, A.M., Perez-Rueda, E. et al. (1998) From specific gene regulation
to genomic networks: a global analysis of transcriptional regulation in Escherichia
coli. BioEssays Vol 20, John Wiley and Sons Inc., New York, pp. 433–440.

Weaver, D.C., Workman, C.T. and Stormo, G.D. (1999) Modelling regulatory net-
works with weight matrices. Pacific Symposium on Biocomputing, 4, 112–123.

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

Part 3
Future Techniques

219

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

220

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

9
Genetic Programming

9.1 Method

Genetic programming (GP) is one of the most recent techniques in ar-
tificial intelligence and is closely related to the GA (described in Chap-
ter 8). It makes use of some properties of GAs in that it is a stochastic,
population-based, evolutionary approach to search and optimization.
However, it differs significantly from the GA in some of the operators
that are used and, most crucially, in the representation of a solution to
the algorithm. Traditional GAs derive a solution to a problem where the
solution is represented by a string of variables (chromosome, see Chap-
ter 8) related to the problem at hand. Genetic programming, however,
uses a tree (often known as a parse tree) to represent a solution to the
problem, and it is this which constitutes the main difference between GAs
and GP. Genetic programming was originally conceived as a method for
computers to program themselves (‘automatic programming’) by using
these trees and it has been shown that the programs it derives can be
used to represent a range of equations and functions which are based
on the tree representation. Genetic programming has found a range of
applications in science and engineering disciplines, most successfully in
electronic circuit board design and automated programming tasks. In
recent times, the founder of GP, John Koza, has been advocating the
fact that GP techniques can create human-competitive designs for these
and other problems. The algorithm has been able to recreate a large
number of designs which were previously granted patents and some new
designs that are expected to be of patentable quality. This shows the

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd

221

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

222 GENETIC PROGRAMMING

ability of the technique to develop new solutions to problems. In addi-
tion to this, it also shows that the inventions it arrives at are very similar
to those developed by humans, and lays a good claim to the name of
artificial intelligence. As an extremely powerful technique, GP could eas-
ily be one of the most used techniques in bioinformatics in the coming
years.

The algorithm

Genetic programming uses the same principles as other evolutionary tech-
niques, in that it makes use of a population of solutions to the problem
which are then manipulated by operators such as selection, mutation and
crossover. These operators are executed on the population repeatedly to
achieve better solutions over time. It differs, however, in the type of oper-
ators used and, as previously discussed, the representation. The following
sections describe the tree representation and the operators used to create
new trees during the algorithm run.

Tree representation

A tree consists of two types of elements, operators (which are distinct
from the genetic operators we have seen previously) and terminals. As
their name suggests operators perform operations on the terminals and
terminals are essentially variables in a computer program. Common
operators include the mathematical operators such as plus, minus and
multiply which have arity 2 (they require two terminals to operate on)
and log10, exp and square root those which have arity 1 (they require
only one terminal). The terminal set consists of variables relating to the
problem and also constants such as integers and real values (perhaps
PI or e). The selection of operators and terminals depends very much
on the problem at hand, in much the same way that the choice of deci-
sion variables is very important for the operation of GAs. A tree can be
created from the operator and terminal set according to a set of simple
rules.

1 The first node must be an operator.

2 An operator must have exactly the number of arguments as deter-
mined by its arity.

3 An operator can take any operator (including itself) or any terminal
as an argument.

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

METHOD 223

5 3 4 1

−+

∗

Figure 9.1 A small parse tree using the integers one to two and the standard
mathematical operators; the result of this tree can be computed as
24 ((5 + 3)∗(4− 1))

Figure 9.1 shows an example tree which could be created from simple
mathematical operators and the integers one to five. The initialization
process of each solution must be completed in such a way that completely
new, random trees are created for each individual in the population.
The way in which the tree is created can be completed in a number
of ways, although the most commonly used methods are ‘grow’ and
‘full’.

1 Grow – In this mode, the first node is an operator, and then elements
randomly taken from the complete set (terminals and operators) are
added to the tree. Once the tree has reached the maximum depth
(specified as a parameter), or if all operators have terminals, then the
function is stopped. This process can be seen in Figure 9.2.

3 2

3 +

∗

3 +

∗

3

∗∗

Figure 9.2 The ‘grow’ initialization operator – note that at each iteration any oper-
ator or terminal can be added to the tree and that the resulting tree does
not necessarily have an even number of leaves; the result of this tree can
be computed as 15 (3∗(3 + 2)

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

224 GENETIC PROGRAMMING

2 5 2 4

⁄⁄+ +

∗ ∗∗

Figure 9.3 The ‘full’ initialization operator with maximum depth 2 – at each itera-
tion, the operator checks to see whether it has met the maximum depth,
if so, then terminals are added, if not, then operators are added; this
tree therefore is symmetrical and its result can be computed as 3.5 ((2 +
5)∗(2/4))

2 Full – In full mode, the first node is again an operator, but only
operators are randomly added until the maximum depth is reached.
Once this has been completed, terminals are added to the final level
of operators until they all have the required number of arguments.
This process can be seen in Figure 9.3.

The advantage of the ‘grow’ method is that it tends to be quicker
than the ‘full’ method, but the trees are usually not symmetrical and,
despite the maximum depth setting, in the worst case it is possible for
a tree which is grown to have only one operator (the initial operator).
The ‘full’ method takes longer to initialize than the ‘grow’ method but
trees of a guaranteed size (determined by the maximum depth) can be
created.

Fitness evaluation

Once a population of trees has been created, they can be evaluated for fit-
ness in a similar way to a GA. There is a significant difference, however, in
that whereas a GA chromosome is evaluated simply by viewing the gene
values, a tree must be executed to give a result. This result can be a single
value, or it can consist of a set of values created by executing the tree
on a variety of different variable (terminal) settings. The result or results
from the tree are compared with the required result by the user-defined
objective function. The objective function therefore uses this compari-
son function and returns a fitness for the solution. Once the evaluation
process has been completed, the genetic operators are used to create new

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

METHOD 225

solutions for the algorithm to progress to the next generation. In other
words, if the user can specify what is required of a program and specify
this requirement in the objective function, GP can be used to generate a
tree (program) that describes how to produce what is required. So while
both GAs and GP deal with solutions to problems, they differ in what
they produce. Genetic algorithms produce solutions that contain com-
binations of parameter values (possibly weighted) to satisfy a function,
whereas GP produces solutions that contain a series of instructions for
producing desired and specified program behaviour.

Selection

The selection processes for GP are essentially the same as those used
for GAs. The selector is only concerned with the fitness of the solution
in comparison with others in the population and therefore many of the
same techniques can be taken from GAs. The GA selection techniques
can be seen in Chapter 8.

Crossover

Whilst GA selectors can be used for GP, the crossover operator must
take into account the tree structure of the chromosome. The actual oper-
ation of the crossover remains similar in that it aims to share the genetic
information of two individuals, by cutting two individuals at a certain
point and exchanging genetic information at those points. However, the
GP crossover must take into account the fact that operators must have
the required number of terminals to operate correctly. This is achieved
by guaranteeing that the crossover location in both chromosomes corre-
sponds to a sub-tree in each individual. A sub-tree is defined as a portion
of one of the main trees which could be correctly executed on its own,
i.e. that all the operators have the correct number of terminals. The steps
in this crossover are:

1 choose a random point on the chromosome;

2 evaluate whether this point is the start of a sub-tree – if not,
return to 1;

3 execute 1–2 on the second chromosome;

4 swap the subtrees.

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

226 GENETIC PROGRAMMING

Polish notation∗
Arity

∗

*The process of converting a tree to polish notation can be seen in figure 9.5.

No

1
1

2
+

No

1
2

2
5

No

−1
1

0
3

No

−1
0

0
−

No

1
1

2
4

No

−1
0

0
1

Yes

−1
−1

0

Sub-tree found
Cumulative Z value
Z value (arity − 1)

Arity 0

Arity 2 Arity 2

Arity 2

Arity 0 Arity 0 Arity 0

5 3 4 1

−+

∗

Figure 9.4 Detecting sub-trees for crossover

The vital point here is step 2, determining whether the random point
is the start of a sub-tree. To discover this, once the random point is
determined, the algorithm moves along the tree, maintaining a sum Z.
As the algorithm moves along the tree, if an operator is encountered,
its arity minus one is added to Z. Terminals cannot take arguments and
have an arity of zero, therefore if a terminal is encountered, 1 is removed
from the total Z. If Z reaches the value of −1, a sub-tree has been located
and the start and end points of the sub-tree can be recorded. This process
is shown in Figure 9.4 and locates potential sub-trees from any point on
the chromosome. The calculations in Figure 9.4 show that the sub-tree
is identified by a −1 result by progressing through the tree maintaining
a sum (−1) of the arity of any operators. Terminals cannot take any
arguments (they have zero arity), and therefore they are represented as
0 in the calculation. If the result is not −1 then the resulting tree is not
a sub-tree and cannot be used for crossover. Other methods exist to
discover crossover points, but this is one of the most intuitive. A further
example is to start at the plus operator, so 2 = 1, then add terminal 5
(2 = 0) and terminal 3 (2 = −1). This also constitutes a valid subtree.

Mutation

Mutation in GP is also different from that in GAs, again due to the
maintenance of tree structure. In GAs, mutation can occur by simply

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

METHOD 227

changing one bit in the chromosome. In GP this can also be accomplished
by changing one bit, but operators must be mutated to other operators
and likewise with terminals. If this principle is violated, the structure of
the tree breaks down and a syntactically invalid tree can be created.

Another method is to use the technique developed in the initialization
to create new sub-trees in the tree. The process for this is shown:

1 select a random point X on the tree;

2 if X is an operator, go to 3 otherwise repeat 1;

3 delete the sub-tree leading from X, and add a new sub-tree us-
ing either the ‘grow’ or ‘full’ method of initialization described
earlier.

This process leads to substantially new material being added to the tree
and therefore constitutes an effective mutation technique.

With the application of standard selection, and specific mutation and
crossover (of which only a few examples are seen here) operators, new,
better-performing trees can be created to solve a large variety of problems.

Tree interpretation

Whilst the above algorithm is well formulated in terms of the manipu-
lation of trees, the question remains as to why trees should be created
at all. A tree differs from a traditional GA approach in that the actual
variables of the problem only form a subset of the total structure used
by the algorithm. The tree notion is usually used to represent an equa-
tion or function, where problem variables are combined with a variety
of operators to arrive at a single representation that solves the problem.
For example, if we wanted an equation to result in the number 43 us-
ing only the integers 1 to 5 and the common mathematical operators,
GP could find the combination of operators to accomplish this. Once a
tree has been created, it can be converted into a normal mathematical
or programming language format so that it can be read and verified in-
tuitively. Also there are some programming languages, such as Lisp and
other functional and logic programming languages, that use tree struc-
tures for representing both data and function. If GP is implemented in
these languages, there is a natural way of executing the tree structures
within these languages through the use of an ‘evaluation’ command on
a tree. Figures 9.1, 9.2 and 9.3 illustrate this process.

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

228 GENETIC PROGRAMMING

Polish notation

In many GP applications, trees are expressed in Polish notation or reverse
Polish notation. Polish notation was devised by the Polish philosopher
and mathematician Jan Lucasiewicz (1878–1956). This notation allows
a two-dimensional tree to be represented as a string of characters and
converted easily back to the tree format. The recursive nature of con-
verting trees can appear complex at first, but a number of steps executed
repeatedly allows this conversion to take place. Figure 9.5 shows the
process of converting a tree into Polish notation and back again. The
order in which elements of the tree are added to the string are shown
next to each element of the tree. Each element is added depth first, until
a terminal is encountered. Once an operator has all its arguments, the
process moves back up the tree and fills those operators that still have
unfilled arguments.

The rule is that the elements are added depth first, so an operator of
arity 2 followed by two further operators leaves each of the operators
unsatisfied. Operator 2 occupies one argument of operator 1 and
operator 3 occupies only one argument of operator 2. Operator 3 has
no arguments filled until further operators or terminals are added. With
each successive addition of an operator or terminal, if there are no more
free arguments then move back up the tree and fill operators further
up. It is this recursive nature of both the creation and execution of

2

1

2

3 4 8 9

5 6

7

2 4

⁄+

∗

5 5

+

Polish
notation

∗ + 2 + 5 5 / 2 4

1 2 3 4 5 6 7 8 9

Figure 9.5 Converting parse trees to Polish notation

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

METHOD 229

these trees which can be one of the more difficult concepts to grasp. By
creating some simple expressions in Polish notation and writing them
as trees, the method can be learnt quickly.

Bloat

Genetic programming trees are often subject to a phenomenon known as
‘bloat’. By necessity, GP uses variable length chromosomes to represent
trees and, theoretically at least, these trees can have infinite depth. How-
ever, in most applications a tree beyond a certain size is costly to process,
unwieldy to interpret and often fails to generalize beyond the training set
that it has been given. The increase of a tree size beyond a required limit
(known as ‘bloat’) is a significant problem with GP, since the execution
time for trees can increase very rapidly as they grow in depth.

There exist a number of strategies to mitigate this effect, including:

1 introduction of a fitness penalty based on the depth of the tree,

2 introduction of a hard threshold so that trees cannot exceed a
certain depth,

3 multiple-objective approaches, using tree depth as a second
objective (Bleuler et al., 2001).

The first strategy ensures that very large trees are unlikely to be created
since the fitness will be reduced if the tree becomes large. On the other
hand, a satisfactory solution (tree) may be inadvertently deleted by this
strategy. The second strategy is a little more difficult to implement and
ensures that computation time is strictly limited. This strategy, however,
can also be problematic (like the first strategy) if very good trees for the
problem tend to be large.

The final strategy does not guarantee that processing times will be
small, but rather gives a set of trees which are evaluated both for their size
and accuracy. Whilst limits can be placed on multi-objective approaches
(by using methods such as constrained-dominance (Deb et al., 2000)),
an unconstrained multi-objective approach would not remove bloat from
the algorithm. The processing time would be similar to a standard GP run
as solutions with higher depth would be accepted alongside smaller so-
lutions. However, it would highlight the relationship between tree depth
and accuracy and could therefore prove to be useful in determining what
amount of bloat is necessary to deliver the required result accuracy. The

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

230 GENETIC PROGRAMMING

problem of bloat is therefore significant, but a number of strategies exist
in the literature to mitigate its effect.

Conclusion

Genetic programming represents one of the most powerful and flexible
techniques for deriving the equations and functions about unknown sys-
tems. The properties of the GP algorithm are quite different from those
of the GA and consequently less well-understood and used. The fun-
damental evolutionary processes that underpin the GA are maintained
in GP, but the trees that are derived require special manipulation and
interpretation.

The following sections describe how to implement GP for bioinformat-
ics problems and also some existing applications of them in this field.

9.2 Application guidelines

Introduction

Genetic programming can be applied to a large number of problems and
has been successfully applied in a number of areas. To a certain extent,
the same application requirements for GAs apply to GP, i.e. the problem
should possess an objective function that responds relatively smoothly to
changes in the chromosome. The issue of problem representation is less
pronounced for GP, since trees are the default representation. However,
a number of parameters must be selected with care when using GP. These
issues are discussed below.

Terminal selection

Genetic programming is sensitive to the type and range of variables it
is given, and much thought must be given to the terminals and opera-
tors supplied to the algorithm to enable it to perform well in its task.
Genetic programming can combine and recombine its problem variables
in a way that GAs cannot. For instance, if GP requires the variable 0.6
in an equation, it can create this by combining the terminals 6 and 10,
and the divide operator. The algorithm can overcome some shortcom-
ings in the representation of the problem, but it will still require as many

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

APPLICATION GUIDELINES 231

variables (terminals) relating to the problem as possible. Generally speak-
ing, random constants are also added as terminals to allow GP a greater
freedom in deriving equations. The number and range of these constants
will depend on the problem itself.

Operator selection

Operator selection can be a tricky business as the more powerful opera-
tors such as power, exp, factorial, etc. can easily create numbers which
are beyond the range of most personal computers. The problem is that,
due to the random nature of GP, any of these operators can be applied to
any other, and the same operator can even be ‘nested’ and applied to itself
repeatedly. The following example shows two nested power operators:

POW(50, POW(10,2)) = POW(50, 100) = 50100.

As can be seen, this result would be a huge number even though only
the power operator and some reasonably small integers were used. Such
operators must be carefully restricted or, in some cases, eliminated from
GP altogether.

Aside from these unrestricted operators, there are a large number of
standard mathematical functions that can be used, such as plus, minus,
multiply, etc., but care must be taken with the divide function as it must
be restricted so that a divide by zero error cannot occur. If either of the
arguments is zero, then a zero is returned as opposed to performing the
divide function. This is not a difficult fix, but does illustrate that care
must be taken when devising operators for use with GP.

General applications

As with GAs, the applicability of GP to a problem will depend on whether
a well-formed objective function can be created and whether the re-
quired solution can be represented as a program or function. A variety
of applications and a wealth of other information can be found at John
Koza’s website1. Koza is often described as the ‘father’ of GP and this
site describes in detail some of the more impressive feats of GP. These in-
clude ‘human-competitive’ applications where GP has created previously
patented inventions, or new inventions which are determined to be of

1 More information can be found at http://www.genetic-programming.org.

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

232 GENETIC PROGRAMMING

patentable quality. Through this website the power of GP, and in partic-
ular its ability to display ‘human-competitive’ intelligent behaviour, are
illustrated.

Software

A smaller subject field than GAs, GP has fewer implementations for po-
tential users. Generally speaking, GA software can be converted to per-
form GP as long as it can form variable length chromosomes. However,
a large list of free and commercial be spoke GP implementations can
be found at The Genetic Programming Notebook2, the most notable of
which is Discipulus3, a commercial WindowsTM package.

9.3 Bioinformatics applications

Introduction

Genetic programming has only been in existence since the early 1990s and
therefore is one of the newest techniques contained in this book. Whilst
this pre-dates much of the modern bioinformatics research, a number
of more established techniques are often used before GP is considered.
Therefore the number of GP applications to bioinformatics problems
is currently small. As with other areas of science and engineering, GP is
starting to make more of an impact and the work undertaken here shows
the diversity of existing applications of GP to bioinformatics problems.

Genetic programming in data mining
for drug discovery

This work conducted by Langdon and Barrett (2004) is a neat example
of how GP can be applied to the problem of drug discovery for human
medicinal purposes. Drug discovery as a whole field is a ‘hot topic’ in
bioinformatics as currently it takes a new drug compound between 10
and 12 years to get into mainstream usage. Much of this time is often
spent testing the drug firstly in the laboratory and then later in organisms

2 More information can be found at http://www.geneticprogramming.com.
3 More information can be found at http://www.aimlearning.com.

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

BIOINFORMATICS APPLICATIONS 233

and animals. Whilst the laboratory testing stage of a drug is relatively
cheap, it can also be frustrating as there will exist many compounds with
similar properties that have to be tested. Pharmaceutical companies are
constantly searching for automated methods to help them target their
search in these initial stages. Langdon and Barrett showed that GP can
be successfully used for determining the bioavailability of a set of com-
pounds based on their structure. The bioavailability of a compound is
one of a set of metrics and is designed to determine how well a drug will
pass through the various bodily systems and, on reaching the active site,
how much effect the drug will have. If taken orally, a drug is subject to
many bodily mechanisms such as digestion, metabolism and excretion.
Some compounds will be relatively unaffected by these processes whereas
others will have practically no effect on their target because they have
been broken down by these bodily functions before they can reach the
target site.

Method

The task for GP is to determine which of a set of compounds will satisfy
the requirements for drug bioavailability. The notion of ‘acceptable’ is de-
termined by a threshold value of 33 for bioavailability with those falling
below this level deemed ‘poor’ and those above ‘acceptable’. By applying
this threshold, a classification problem is created to distinguish between
the poor and acceptable compounds. The classification accuracy of the
system is computed as the ‘ROC convex hull’ approach (ROC stands for
receiver operating characteristics), which is an ingenious method of giv-
ing false positives and false negatives the same importance in the fitness
function. Readers are directed to Langdon and Barrett (2004) for more
detail on how this works, as they demonstrate an excellent way of trans-
forming a classification problem into a smooth objective function for use
with genetic techniques. The method was trained and tested on a variety
of data, taken from drug trials on both humans and rats. As would be
expected, the data on rat bioavailability was more abundant and better
distributed, since the human data consisted only of those drugs which
made it through initial screening. Each drug compound was represented
by 83 variables that were used to identify functional groups within each
drug. These functional groups have been identified and developed over
a long period of time by the pharmaceutical companies and included
electrical, structural, topological and physico-chemical features of the
compound.

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

234 GENETIC PROGRAMMING

In addition to the chemical variables, a variety of constants (some
of which were random) were added to the terminal set. The operator
set consisted of the standard mathematical operators (with a protected
divide operator as discussed earlier) and a four-level ‘if’ conditional op-
erator. This set of constants, operators and variables perfectly illustrates
an application of GP to a bioinformatics problem. The constants and op-
erators give the GP the flexibility to provide combinations of the feature
variables, and the ‘if’ statement allows the algorithm additional scope to
develop logical rules as well as standard equations.

Genetic programming was run on each of the datasets and tested on a
hold-out dataset (to determine how well the created trees generalize be-
yond the training set). The performance on the human dataset was better
than the performance on the rat dataset, but it was discovered that the
trees discovered for the human data did not generalize to (i.e. perform
well on) the rat data. However, the reverse was true: the trees gener-
ated on the admittedly larger rat dataset were successful in predicting
bioavailability in the human dataset.

This finding suggests that human and rat bioavailability are closely
related and, perhaps more significantly, GP discovered a set of features
which was applicable to both species. The tree which correctly classified
both sets of data was able to be significantly simplified with only a small
loss in performance and was subsequently much simpler than expected.
This not only highlighted the possibility that bioavailability was more
simple than previously thought, but also shows the power of the GP
approach. Whilst the constituent elements of a tree are simple operators
and terminals, they can be combined together with great effect and the
final trees can be easily interpreted and simplified by end-users.

Genetic programming for functional genomics
in yeast data

This work, undertaken in 2000 by Gilbert, Rowland and Kell represents
one of the first applications of GP to a bioinformatics topic. This research
used some of the first reliable gene expression data taken from a set of
experiments with a species of yeast, Saccharomyces cerevisiae. The data
itself was collected in a time-course experiment where the yeast was ex-
posed to a set of 79 different experimental conditions, including heat
shock, reducing shock and sporulation (for more on this see Eisen et al.,
1998). Each of the genes had been assigned one of six classes – ‘Histone’,
‘Proteasome’, ‘TCA Pathway’, ‘Respiratory Complex’, ‘Ribosome’ and

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

BIOINFORMATICS APPLICATIONS 235

‘HTH-containing’ – which were learnt from existing functional knowl-
edge. The task for GP was to assign genes to the correct classes using
their gene expression profiles over the 79 experiments.

Method

Each gene was represented by a set of expression values over time and was
added to the dataset of some 304 training genes and 152 testing genes.
The objective function was to minimize the number of classification er-
rors determined by the rules where each individual in the population
comprised six rules (one for each class). Therefore a single individual in
the population could classify the entire training set of genes, by utiliz-
ing its six rules to determine to which class the gene belongs. If a gene
was found which did not trigger the execution of any of the rules, it
was assumed that that gene had an unknown function. To accomplish
this task, the GP implementation used the standard set of mathematical
operators, and an ‘if greater than or equal to operator’ which compared
two variables and returned a one for true, or zero for false.

This GP implementation was run five times on this problem (with dif-
ferent random seeds) and the results were very encouraging. The method
correctly classified the vast majority of the training and test data, return-
ing 100 per cent test accuracy on the classes Histone, TCA Pathway and
Respiratory Complex. The three remaining classes were classified with
a maximum of two misclassifications on the test data. In 80% of runs
the GP discovered the rule if alpha [35] ≥ alpha [49] then “TCA Path-
way” else “Unknown”, suggesting that all the TCA pathway genes can
be identified using just the 35 minute and 49 minute timepoints from
the α-factor cell division cycle experiment. This shows that the GP ap-
proach can be used to classify genes successfully by functionality based
on their expression levels across experiments. In addition to this, the au-
thors applied the classifier to the entire dataset and found that some 291
genes were predicted to be of class ribosome (characterised by the rule
if (elution [30] − leaf [20] − diauxic [b]) ≥ (alpha [119] + 1.15335)
then “Ribosome” else “Unknown”)). Of these 291, 121 had previously
been identified as ribosomal genes, and the remaining 170 had known
or suspected function. Of these 170, 102 of the genes appeared to have
functionally-similar properties to ribosomal genes. The authors therefore
surmised that the current classification schema for these genes was too
strict, and that the GP approach had found a more inclusive system for
classifying these genes. A further important attribute of this approach

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

236 GENETIC PROGRAMMING

was that the GP trees, once converted into rules, could then easily be
interpreted by biologists and assessed for their biological feasibility. This
transparency was often not present in other classification methods, such
as neural networks and other clustering techniques. The application of
GP here was therefore vital in the further understanding of the yeast gene
expression data due to its ability to extract meaningful and accurate in-
formation from the data.

Therefore this approach shows all the desirable features of the GP
algorithm. The approach was firstly able to classify correctly the set of
genes on which it was trained, and also test data that was not part of the
training process. In addition to this, the classifier was used on the entire
dataset to predict a certain classification for a number of genes, a number
of which agreed with a current functional genomic database, and a num-
ber of which appeared to have similar function. Finally, the approach
was able to identify the genes used in the classifier in an easily-digestible
manner and this led to the proposed classification of a number of pre-
viously functionally-unknown genes. This work therefore demonstrates
the power, flexibility and accuracy of the GP approach.

9.4 Background

The basis of GP was formed with the discovery of GAs by John Holland
(see Chapter 8 for more on this), as this laid the foundations for evolved
population search. The subsequent discovery of GP is often attributed
to John Koza (1992) who first arrived at the idea of evolving programs
rather than strings of bits and other more static representations. Since
this time, there has been a steady increase in the number of researchers
working with GP, but the field is still much smaller than that of the GA.

9.5 Summary of chapter

1 Genetic programming is one of the family of evolutionary techniques
that include GAs. They operate broadly in the same fashion in that
they use a population of solutions, stochastic operators and an ob-
jective function.

2 They differ from GAs in that they evolve parse trees from operators
and terminals rather than a static set of variables. To accomplish this,
the chromosome needs to be of variable length.

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

REFERENCES 237

3 Genetic programming trees can suffer from bloat, be expressed in
Polish notation and can often be extensively simplified from their
evolved state.

4 Genetic programming has discovered human-competitive patentable
inventions and has also found applications in many areas of science
and engineering, including bioinformatics

9.6 References

Bleuler, S., Brack, M., Thiele, L. et al. (2001) Multiobjective Genetic Programming:
Reducing Bloat Using SPEA2. Proceedings of Congress on Evolutionary Compu-
tation (CEC 2001), pp. 536–543.

Deb, K., Agrawal, S., Pratap, A. et al. (2000). A Fast Elitist Non-dominated Sort-
ing Genetic Algorithm for Multi-objective Optimization: NSGA-II. Proceedings
of the Parallel Problem Solving from Nature VI Conference , 16–20 September.
(Paris, France), pp. 849–858.

Eisen, M.B., Spellman, P.T., Brown, P.O. et al. (1998) Cluster analysis and display of
genome-wide expression patterns Proc. Natl. Acad. Sci., 95, 14863–14868.

Gilbert, R.J, Rowland, J.J. and Kell, D.B. (2000) Genomic computing: explanatory
modelling for functional genomics, in Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO-2000) (eds D. Whitley et al., July 10–12,
2000), Las Vegas, Nevada, USA. Morgan Kaufmann, pp. 551–557.

Koza, J.R. (1992) Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, Massachusetts.

Langdon, W.B. and Barrett, S.J. (2004) Genetic programming in data mining for drug
discovery in Evolutionary Computing in Data Mining, (eds A. Ghosh and L.C.
Jain), Physica Verlag, pp. 211–235.

JWBK023-09 JWBK023-Keedwell April 1, 2005 0:32 Char Count= 0

238

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

10
Cellular Automata

10.1 Method

Cellular automata (CA) are unlike many of the other techniques pre-
sented in this book in that they are more often used for the simulation
and modelling of systems rather than for optimization or classification.
This is largely due to the fact that they were originally conceived to sim-
ulate complex systems arising in nature such as those seen in physics,
chemistry or biology. In all these examples, the systems are complex be-
cause of the interactions of a number of elements contained within a
fixed environment. In chemistry and physics, molecules and atoms col-
lide and react with each other countless times a second, and in biology
small organisms such as bacteria compete with each other for resources.
The common thread to all these systems is that individual elements, be
they molecules, atoms or organisms, interact with each other in parallel.
Traditional serial models of computation can make these interactions
difficult to calculate, but CA represent an alternative to this because they
can model these large-scale interactions between elements in a parallel
fashion. This is possible because CA consist of a uniform grid of cells,
each of which can be thought of as a point of space. Each of the cells
contains a small number of bits of information which represent the state
of that cell. The state of each cell is updated by using rules (known as
state transition rules) which, based on the states of other neighbouring
cells, change the state of the current cell accordingly. The state transition
rules themselves must be uniformly applied across the whole grid of cells.
This approach enables a rudimentary simulation of systems with multiple

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd

239

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

240 CELLULAR AUTOMATA

elements, since each cell can be occupied by one of the elements by a mod-
ification of its state (at its most simple, occupied or not-occupied). In this
fashion two adjacent occupied elements can be thought of as ‘reacting’ or
‘colliding’. The state transition rules then determine what occurs when
two adjacent cells are occupied and what occurs to the elements once they
have reacted. It is in this way that a contained ‘universe’ can be simulated
by using CA and in the past, parallels have been drawn between CA and
a stylized universe operating under a set of uniform laws. Cellular au-
tomata can therefore be useful in modelling physical systems including
diffusion, fluid dynamics, ballistic computation, chemical reactions and
biological phenomena.

They are often difficult techniques to apply in many areas, including
bioinformatics, as special attention must be paid towards the system for-
mulation. The system must be separable into the discrete elements seen
in a CA, or of course represented in such a way that this level of gran-
ularity is acceptable. Once this has been accomplished, CA offer a type
of computation to different from any of the other techniques described
in this book, with the opportunity of simulating complex systems in an
efficient fashion. The following sections describe the basic operation of
a CA and some potential applications of the technique.

The grid of cells

As described previously, a CA consists of a grid of cells which can adopt a
number of states. In the most simple example, each cell can adopt one of
two states (on or off, 1 or 0), but some applications as will be seen later
require a significantly greater number than this. Each cell has a neigh-
bourhood of additional cells which surround it in the grid the definition
of which is important in the execution of the state transition rules. Fig-
ure 10.1 gives an example of some different neighbourhoods. The black

von Neumann
neighbourhood

Moore
neighbourhood

Figure 10.1 Two possible neighbourhoods for use in a CA

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

METHOD 241

square represents the cell under consideration and the shaded squares
correspond to the neighbours of that cell. A von Neumann neighbour-
hood allows cells to communicate with up, down, left and right cells. A
Moore neighbourhood, on the other hand, contains the von Neumann
neighbourhood plus the diagonally contiguous cells. These are just two
examples, there are many other neighbourhoods, especially when three-
and higher-dimensional CA are considered.

The state of each cell is influenced by the states of cells within the spec-
ified neighbourhood. It is in this way that the selection of the neighbour-
hood influences the path that the cellular automaton will take. Neigh-
bourhood selection is highly dependent on the problem domain that the
automaton is intending to simulate. In some applications, reactions can
take place over some distance, whereas in others the elements must be
adjacent to be able to react. The state transition rules take into account
the number and type of elements in the neighbourhood of the current
cell and so are often designed with the neighbourhood in mind.

State transition rules

Cellular automata are executed in discrete timesteps. The grid is ‘frozen’
at each timestep and the state transition rules applied to every cell in the
grid before the states are updated and the rules are applied again. This
discrete time behaviour is important for the control of the CA. To proceed
from one step to the next, a rule or set of rules is executed to determine
how the state of the current cell changes with respect to its current state
and of those in its neighbourhood. These rules are uniformly applied
to all cells in the grid and therefore direct the computation of the CA.
However, no update of cells is allowed in most CA until and unless all
cells have applied their transition rules. When they have, all the updates
will be flushed through the CA to result in a new configuration. The
process is iterative and is applied for as long as the CA is allowed to run.

Conway’s life

One of the most elegant and simple examples of a CA is ‘life’ designed by
John Conway. The state transition rule-set is simple, but shows a ‘glider’
phenomenon which represents an emergent property. These emergent
properties are high-level concepts that are the result of applying rules at
a local level. In ‘life’ a single object is seen to move or ‘glide’ across the
screen, but this is actually only the result of applying simplistic rules to

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

242 CELLULAR AUTOMATA

each of the cells which make up the grid in which the glider is seen. The
rule-set for ‘life’ and an illustration of the glider phenomenon are shown
below.

1 If a cell is off (state 0) and exactly three of its neighbours are on (state
1) then that cell becomes on (state 1) in the next timestep, otherwise
it remains off.

2 If a cell is on and either two or three of its neighbours are on, then in
the next timestep, that cell remains on, otherwise it is turned off.

Figure 10.2 shows how a simple set of rules, when applied repeat-
edly, can achieve an emergent phenomenon. In this case the object in the
top-left corner appears to glide down and to the right with every four
timesteps of the CA execution. The rules themselves are designed to rep-
resent (very loosely) life and death in a set of organisms and work thus. A

Time T

Time T + 4

Time T + 3

Time T + 2

Time T + 1

Figure 10.2 A graphical depiction of Conway’s ‘life’ application of CA

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

METHOD 243

cell which is on is occupied by an organism, and when three individuals
surround it, a new organism is born. To survive, an organism needs a cer-
tain number of other organisms surrounding it (in this case two or three),
otherwise it dies from exposure or overcrowding. This example provides
a rudimentary example of how principles can be taken from biology and
loosely applied to the CA approach. These rules represent only one form
of ‘life’, a huge number of others can be seen on the internet1. What is
interesting is that the behaviour observed – that of a five-cell organism
gliding one-step south-east – is an emergent property that could not have
been predicted from a knowledge of the transition rules alone. That is,
the property emerges only for certain initial configurations, and there is
nothing in the rules that tells us which configurations will display a gliding
move and which other configurations will not. The only way to find out
is to run the CA for different initial configurations and see what happens.

There are numerous rule-sets that can be created simply with a two-
dimensional automaton and neighbourhood pairing. This, when com-
bined with more complex states, can yield a wide variety of behaviours
and application possibilities. However, it is the richness of state transi-
tion rules which give CA their flexibility and power. Toffoli and Margolus
(1987) describe a set of principles which can be used to extend the capa-
bility of state transition rules.

1 Second-order rules – These rules use the historic state behaviour of
cells (both the current cell and neighbourhood cells) to compute a
new state for the current cell. This allows the automaton to use some
short-term memory in its decision making.

2 Probabilistic rules – With these rules, state changes are executed ac-
cording to a probability. In contrast to the rules described thus far,
a probabilistic rule could, given the same state, choose from a num-
ber of state changes based on their probability. The advantages of
this type of rule would be that the CA behaves in a more stochastic,
rather than deterministic, manner.

By increasing the complexity and variety of the state transition rules,
a large number of applications of CA are possible. The types of rules
suggested above add depth to the approach by incorporating time as a
third dimension. This can yield more complex and realistic simulations

1 For some excellent illustrations of other types of ‘life’ see http://www.math.com/students/
wonders/life/life.html.

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

244 CELLULAR AUTOMATA

of systems that depend not only on the current state of the system, but
the state of the system in some previous generation. It is also possible
to increase the dimensions of the grid itself, yielding three-dimensional
systems or even four-dimensional when time is considered.

Given a CA, a set of rules and a neighbourhood, the algorithm or sim-
ulation can be run for a predetermined number of iterations. However,
the behaviour of the CA, given this information, cannot be predicted
in advance. The algorithm must be run to determine its behaviour and
therefore its classification. Wolfram (1984) identified four classes of CA
depending on their behaviour.

Class 1. After a finite number of timesteps, the CA tends to achieve a
unique state (limit point) from nearly all possible starting conditions.

Class 2. The CA creates patterns that repeat periodically or are stable
(limit cycles).

Class 3. From nearly all starting conditions, the CA leads to aperiodic-
chaotic patterns (that is patterns that repeat without any specific pe-
riod), where the statistical properties of these patterns are almost iden-
tical after a sufficient period of time to the starting patterns, thereby
producing self-similar fractal curves.

Class 4. After a finite number of steps, the CA usually dies, but there are
a few stable (periodic) patterns possible.

The ‘life’ game described earlier certainly falls into Class 2 and pos-
sibly into Class 4, since the initial configuration leads to periodically
repeating patterns that have moved across the grid.

Conclusions

The theory of CA of discrete cells and universally applied rules remains
the same for each application, but the actual execution of the algorithm
differs considerably depending on the type of problem. Until recently
CA were considered interesting from a purely theoretical point of view,
although they are starting to find more practical applications, including in
bioinformatics. The only restrictions on the technique are that to qualify
as a CA the following elements must be satisfied.

1 The rules must be locally orientated and must be applied uniformly
across the automaton.

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

APPLICATION GUIDELINES 245

2 Each cell must contain only a few bits of data and consist of a finite
number of states.

3 Time must advance in discrete steps.

Often the problem definition determines the number of states, the transi-
tion rules and any emergent phenomena which arise from executing the
automaton. The CA approach can be useful in a number of applications,
as will be shown later, and can reward the extra effort required to code
the problem in this format.

10.2 Application guidelines

Introduction

As described previously, the number of CA applications to real-world sci-
ence and engineering problems is relatively few. Instead of solving prob-
lems or optimizing biological systems that are the focus of many of the
other intelligent techniques in this book, CA have largely been involved in
the simulation of physical systems. They have also been studied for their
emergent and chaotic properties and, while interesting from a theoretical
viewpoint, these studies can be difficult to apply to the real world. How-
ever, optimization and simulation can be accomplished with CA given the
correct problem formulation due to the inherent flexibility in the creation
of rule-sets. Therefore the majority of time should be spent converting
the problem into a rule-set that will give the required optimization or
simulation results. The following section describes a CA approach to an
engineering optimization problem as the majority of the bioinformatics
applications in the subsequent section are simulative in nature.

Example optimization problem

An example of a non-bioinformatics application is that of optimizing
water distribution networks by using CA (Keedwell and Khu, 2004).
A water distribution network contains many elements, but the simplest
networks have demand nodes (vertices) and pipes connecting these nodes
(edges). The aim of the optimization is to change the size of the pipes
so that the demand for water at each of the nodes is met. The sizes of
pipes are taken from a discrete table and have a cost associated with
them. Larger pipe sizes incur increased cost, but allow more water to

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

246 CELLULAR AUTOMATA

be delivered, whereas the reverse is true for smaller diameter pipes. To
solve this problem, nodes in the network are represented by cells in the
cellular automaton and can be in a deficit (not enough water) or surplus
(too much water) state. There are then various rules executed which size
the pipes so that the deficits and surpluses are minimized. These rules
increment a pipe size if there is a deficit at the node to which it is delivering
water and decrement it otherwise. This approach therefore attempts to
implicitly minimize cost but maximize the delivered water. The CA starts
in a random state but the rules drive it to a state of equilibrium. The early
indications are that this technique can provide reasonable quality results
whilst requiring only a handful of network simulations in comparison
with standard GA (see Chapter 8) approaches.

This application, whilst not related to biology gives an example of
how network problems can be solved by using a cellular approach. The
nodes themselves do not make up a grid in a physical sense, but are all
separated by at least one pipe and therefore can be seen to make up a
regular grid. The node states are discrete and few, another requirement
for a CA, and the fact that the optimization proceeds in discrete steps
completes the set of requirements for the problem to be solved using
a CA technique. Therefore even if the problem does not appear to be
immediately applicable to cellular automaton optimization, it is possible
that a formulation can be created if the above criteria are satisfied.

Software

Cellular automata are unlike many of the other techniques that are de-
scribed elsewhere in this book because they are not generic algorithms
in the same way as GAs or neural networks. Both of these techniques
are reasonably generic, in that they can be applied to different prob-
lems with relatively small alterations or the tuning of some parameters.
However, this is generally not the case with CA, because they rely on a
set of rules which have to be problem-specific to operate. A number of
software packages exist (most of them share or freeware) that offer good
visualization facilities to monitor the cellular automaton as it evolves and
also a framework to write rules for specific problems. Even with good
software, a large amount of problem-specific coding will have to be com-
pleted within the software itself. Despite this, a good resource exists at
the CelLab2 where an online tutorial gives a good account of further the-
ory and applications of CA and also an extensive CA framework with

2 For more information go to http://www.fourmilab.ch/cellab/.

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

BIOINFORMATICS APPLICATIONS 247

example rules and the ability to write your own rule-sets in a variety of
languages. Perhaps due to this inherent problem specificity, commercial
packages exploiting CA techniques are very sparse.

10.3 Bioinformatics applications

As mentioned previously, CA have found application in a number of
science and engineering areas since their inception in the late 1940s.
In recent times, though, they have been used in a variety of biological
simulation applications where the notion is that the complex dynamical
systems present in much of biology can be simplified and understood by
applying discrete systems such as CA. What follows is a description of
some of the most interesting work in this area using CA.

Cellular automata model for enzyme kinetics

The work undertaken by Kier et al. (1996) pre-dates many of the modern
technological advances in bioinformatics, but it provides a simple exam-
ple of how CA could be used to model a system that could be difficult
to compute using standard methods. The authors use a CA approach to
model the reaction between an enzyme and substrate in water. The CA
consists of a 110∗110 grid of cells (12 100 cells), each of which can take
the values of one molecule of E (enzyme), S (substrate), P (product) and W
(water); 69 per cent of the automaton was covered with water and 31 per
cent was deemed to be space. When any ingredients are added, they are
assumed to replace the water part of the automaton and therefore this
cavity ratio was maintained. Each cell has a probability associated with
its movement and its interaction with other molecules in the automaton.
An enzyme molecule could react with the substrate, product and wa-
ter molecules, but not with another enzyme. Molecules were determined
to be adjacent according to a von Neumann neighbourhood, where the
four adjoining cells (up, down, left and right) were determined to be
interacting. The extended von Neumann neighbourhood increased this
to two adjoining cells. The general approach to this CA can be seen in
Figure 10.3. This is an extended version of the von Neumann neighbour-
hood shown in Figure 10.1. Note that an extra set of cells are considered
with each iteration of the CA.

The affinities of certain molecules to other molecules were determined
by a probability of joining, breaking and movement. An indication of
the effect of the breaking parameter was exemplified in the breaking

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

248 CELLULAR AUTOMATA

Figure 10.3 The extended von Neumann neighbourhood

probability of water molecules. The manipulation of this parameter was
equivalent to manipulating the temperature of the water in which the re-
actions were taking place. For the following experiments, this parameter
was set to replicate the temperature of the human body. Along with a pa-
rameter to determine the extent to which enzymes reacted with substrate,
this completed the set of parameters required to run the CA.

Results

The CA was run with 50 enzyme cells and a variable amount of substrate
for 100 iterations for each run, and was run 100 times to obtain average
values for results of the runs. Initial velocities were found to vary with
respect to the substrate concentration in accordance with Michaelis–
Menten kinetics and generated good Lineweaver–Burke plots. In addition
to this the water-like (polar) or lipophilic (non-polar) characteristics of
each of the molecules varied as expected biologically by changing the
pertinent parameters of the CA.

Conclusion

This work represented a significant application of CA in a biologi-
cal problem environment. The automaton agreed with well-established
equations for computing the reaction rates of enzymes and substrate re-
actions and therefore was validated as a method for simulating these
reactions. However, as the authors pointed out, the replication of known
variables did not advance the area of research significantly and new infor-
mation must be obtained from a model for it to be successful. By varying
parameters in the model, the authors were able to determine that a lower
affinity between the substrate and water led to increased conversion of
substrate to product. This indicated that the affinity of the substrate to

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

BIOINFORMATICS APPLICATIONS 249

water was more important than the modelled affinity between the enzyme
itself and the substrate. This was a significant finding and was corrob-
orated by further experimental results. Therefore this showed the value
of an accurate CA model, in that small changes in the state transition
rule parameters could manifest differences in global behaviour which
were significant in the understanding of the biological system. In fact,
this application showed a significant application of AI technology to a
biological problem because it was found to accurately simulate the sys-
tem, which could then be perturbed in silico. This process then led to
a hypothesis which was confirmed by biological experimentation and
yielded new knowledge about the process of enzyme–substrate reaction
in a human-like environment.

Simulation of an apoptosis reaction network
using cellular automata

To a certain extent based on the above approach, the work undertaken by
Siehs et al. (2002) used a CA to simulate the molecular reaction pathways
of apoptosis (cell death). Apoptosis is an important process in multi-
cellular organisms since it allows cellular regeneration to take place. In
addition to this, the modelling of the apoptosis process could potentially
permit a greater understanding of the mechanisms of cancerous cells,
since these cells are often characterized by the inhibition of the apoptosis
process.

The CA itself was more complex than that seen in the previous exper-
iment. The grid of cells was two-dimensional in nature and contained
a reasonably complex data structure at each cell point. Each of these
data structures consisted of a number of ‘registers’ which stored vari-
ables relating the current state of the molecules within the cell and its
surrounds.

Register 1. The type of molecular object occupying the site. More than
one object could occupy a site at a particular time.

Register 2. Reaction rate constants of each of the molecules occupying
the site.

Register 3. Molecular neighbourhood (Moore neighbourhood). This
stored the molecule type of each of its neighbours (up, down, left
and right).

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

250 CELLULAR AUTOMATA

Register 4. Distribution of local momentum, based on the hard sphere
collision model.

Register 5. Potential energy status of the molecules on the current
site. This was computed as a function of the attraction/repulsion of
molecules both on the current site and those in the neighbourhood.

Register 6. Molecular reaction lists. Determined what, if any, reaction
occurred when two molecules occupied the same site.

Register 7. Reaction product lists. Determined what products occurred
as a result of the reactions occurring in register 6.

Register 8. Moved direction. This register computed the location of each
of the molecules at time t + 1 given the information in registers 4 and 5.

This CA was unusual in that each of the cells could be in a large number
of states due to the combination of parameters in each of the registers.
However, they were updated in discrete timesteps and based only on
local information, so this implementation was still a CA. Each time the
automaton was updated (the state transition rules were applied), six steps
were performed as follows.

Step 1. Evaluation of molecular collisions and redistribution of kinetic
energies.

Step 2. Propagation of type information from cells into register 3.

Step 3. Computation of the local potential energy situation.

Step 4. Evaluation of chemical reactions.

Step 5. Computation of the grid positions of the molecules in the next
timestep.

Step 6. Full update of the grid based on computational steps 1–5.

These steps, combined with the data structure previously seen, pro-
vided a realistic model of the reaction pathways that could occur in
the cell in apoptosis. This represents a complex set of states and state

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

BACKGROUND 251

transition rules but crucially, due to their limited local influence and dis-
crete timestep, they remain easy to compute as dynamical systems.

Results and conclusion

The authors describe a set of experiments where changes in concentra-
tions of certain proteins involved in the reactions, in addition to external
stimuli, could affect the onset of apoptosis. The CA simulated the com-
plex reaction pathways that could determine the fate of the cell. It was
found that a delicate equilibrium existed between several proteins which
could be perturbed by external factors which in turn determined whether
apoptosis took place. Readers are directed to Siehs et al. (2002) for more
information on the results obtained from these experiments.

In summary, these experiments confirmed what was known experi-
mentally and replicated expected results for different sets of stimuli and
protein concentrations. Again, this work could be used to simulate the
process of apoptosis under a number of different, artificial conditions,
with a small computational requirement. The authors set up the registers
and steps in such a way that this approach could be used to model any
number of molecular reactions and therefore could be used to simulate
a large number of intracellular processes.

Conclusions

The above work showed the simulations of systems that are possible with
CA. The main aim of this research was to investigate the behaviour of
molecules in highly complex environments where there might be many
hundreds or thousands of molecules interacting at once. It is in this ap-
plication area where CA can excel and is mainly due to their parallel
nature, in that all the parameters are updated in one discrete timestep
for every element of the grid. This not only allows the processes to be
observed at specified time intervals, but also provides the opportunity to
simulate systems on parallel hardware and thereby increase performance
in comparison to similar sequential techniques.

10.4 Background

Cellular automata were conceived in the late 1940s, making them one
of the oldest techniques in this book. They were introduced by John von

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

252 CELLULAR AUTOMATA

Neumann on the suggestion of Stan Ulam to provide a more realistic
model for complex systems. In fact von Neumann, in addition to being
a physicist and mathematician, was actually more interested in the re-
ductionist biological applications seen in this book. Since their inception,
CA have been used in many of the ‘hard science’ fields such as physics
and fluid dynamics, as well as fascinating mathematicians. So while they
maintain a pedigree of being highly intertwined with biology from the
very beginning, they have perhaps not been used as much as would have
been expected in the recent explosion in bioinformatics applications.

10.5 Summary of chapter

1 Cellular automata consist of a grid of cells which can adopt a number
of states.

2 Cells change states by virtue of a set of state transition rules which
are applied in discrete time.

3 Cellular automata can be thought of as stylized universes, repeatedly
applying the laws of the universe to the elements within it.

4 The behaviour of a CA is deterministic, but the outcome of applying
a set of rules to an initial random starting point can be difficult to
predict.

5 Applications in bioinformatics are relatively few and tend to be re-
stricted to the simulation of phenomena rather than the optimization
of systems in biology. Nevertheless they have found a number of ap-
plications in bioinformatics.

10.6 References and further reading

Holland, J.H. (1998) Emergence: From Chaos to Order. Oxford University Press,
Oxford, UK.

Keedwell, E.C. and Khu, S.T. (2005) A novel cellular-automaton inspired approach
to optimal water distribution network design ASCE Journal of Computing in Civil
Engineering, in press.

Kier, L.B., Cheng, C.K., Testa, B. et al. (1996) A cellular automata model of enzyme
kinetics. Journal of Molecular Graphics, 14, 227–231.

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

REFERENCES AND FURTHER READING 253

Siehs, C., Oberbauer, R., Mayer, G. et al. (2002) Discrete simulation of homo- and
heterodimerization in the apoptosis affector phase. Bioinformatics, 18, 67–76.

Toffoli, T. and Margolus, N. (1987) Cellular Automata Machines: A New Environ-
ment for Modelling, MIT Press, Cambridge, Massachussetts.

Wolfram, S. (1984) Cellular automata as models of complexity. Nature, 311 (4),
419–424.

JWBK023-10 JWBK023-Keedwell March 31, 2005 3:5 Char Count= 0

254

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

11
Hybrid Methods

11.1 Method

The intelligent methods shown throughout this book have demonstrated
that they can each individually be used to find interesting solutions to
bioinformatics problems. However, occasionally one technique will not
be sufficient to solve a problem, often due to the nature of the problem or
because no one algorithm fits the problem requirements. In this instance
two or more machine learning techniques can be combined together to
create hybrids which can make use of the attributes of each algorithm in
such a way that they are more successful at solving the problem. These
hybrid algorithms are often experimental in nature because they are cre-
ated to solve a specific need in the field of biology. This also means that
they are often created for a specific purpose, and this approach differs
from the more generic methods in this book as hybrids tend to be highly
tuned to the problem they were designed to solve and means that they
can often outperform the single algorithms from which they are derived.
Hybrid algorithms are known under a variety of names: memetic algo-
rithms, for instance, relate to evolutionary-based hybrid algorithms in
combination with local search techniques such as hill-climbing.

There are no hard and fast rules dictating which algorithms can be
combined to give a hybrid, but as will be seen later, evolutionary methods
are often favoured because they can be hybridized in a number of ways.

1 The mutation or crossover operations can be implemented differently
with other algorithms. For instance the mutation operator can be
replaced with a local search algorithm.

Intelligent Bioinformatics Edward Keedwell and Ajit Narayanan
C© 2005 John Wiley & Sons, Ltd

255

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

256 HYBRID METHODS

2 The objective function can be used to compute the result of other
algorithms. For instance, the GA can create a structure which is then
used to set the parameters for a neural network, from which the fitness
is returned.

3 The genetic search can be interleaved with other algorithms. For in-
stance, the GA can be run for a number of generations and then
stopped to allow a local search to take place. These solutions can
then be used by the GA in the subsequent optimization.

These three methods are good examples of how hybrids are con-
structed where evolutionary methods are concerned. It should be noted
that they differ in interaction in that the first method above can be thought
of as tightly coupled: both algorithms’ execution is intertwined. The sec-
ond method is less tightly coupled: only the objective function links the
two. Nevertheless, the secondary algorithm is called for every solution
evaluation. The final method is loosely coupled, since the algorithms do
not have any direct interaction with each other; rather, they are executed
in relative isolation. Evolutionary hybrids can make use of a variety of
schemes for hybridization and this explains their popularity in this do-
main. These examples give an idea of the hybrids that can be created
between different algorithms and approaches, and essentially there is no
limit to the types and methods of creating a combination of two or more
artificial intelligence algorithms.

The next few sections describe hybrid approaches and the problems
they are designed to solve. This is in contrast to the other technique
chapters in this book which maintain a distinction between technique
and application and is necessary because hybrids and the problems they
solve are often closely linked.

11.2 Neural-genetic algorithm for
analysing gene expression data

The problems of gene expression analysis have been described in some
detail previously in this book, so a short explanation will suffice here.
Currently there are two types of microarray experimentation that are
attracting interest in the literature: temporal analysis involves exploring
the interactions of genes over time, and classification analysis attempts
to discover those genes or groups of genes that are associated with a
class value. The two analyses are driven by the goals of the experiment

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

NEURAL-GENETIC ALGORITHM 257

and the type of microarray experiments that have been performed by the
biologist. This, in turn, dictates the type and scale of microarray data
which is available for bioinformaticians to use.

Temporal analysis

Temporal analysis consists of a number of microarray samples over time,
normally taken from a single organism exposed to a variety of conditions
to assess the genetic response to those conditions. The task in such ex-
periments is to determine the interactions between genes or clusters of
genes over time. It is widely acknowledged that a large portion of genetic
activity is self-regulated, in that the proteins created by the expression of
certain genes themselves cause other genes to be expressed in this cell. The
goal of the analysis is to determine these complex regulatory connections
from small-scale and large-scale expression data.

Classification analysis

The classification analysis consists of a number of microarray samples
taken from a number of individual organisms (often patients diagnosed
with a disease). Each of the samples has a class associated with it which
is independently assigned. The majority of classification studies are per-
formed on human subjects in an attempt to discover the genetic differ-
ences between, say, patients with cancer and those without. Classifica-
tions can either be determined by a medical diagnosis, or in cases where
the diagnosis is very difficult, the pathology of the disease. There are
some difficulties with this approach, namely, that the classification by
humans in some cases is not guaranteed to be correct, and also that sig-
nificant genetic patterns are not guaranteed to cause the cancer – they
could be symptoms. Despite this, analysis of classificatory microarray
data is one of the most popular activities in bioinformatics as the num-
ber of gene expression databases, taken from microarray experiments,
which are available on the web increases.1

Neural-genetic approach

Chapter 8 describes a standard GA approach to the problem of extracting
regulatory networks from microarray data, but there are some difficulties

1 See http://www.broad.mit.edu/cancer/ for some example data-sets.

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

258 HYBRID METHODS

with the approach. Experiments conducted in Keedwell (2003) showed
that the approach of generating an entire regulatory network by GA was
not feasible for the size of real-world networks. This was because in a
matrix representation any gene could potentially regulate any other and
so the size of the network was the square of the number of genes. For
a network matrix of even 1000 genes, this led to a chromosome size of
1 000 000 integers, which was too large for most GA software, and would
require excessive computation to evaluate. Although the premise that any
gene can affect any other in the network must be maintained, biology
and complexity analysis tell us that the actual number of genes which
can regulate another is likely to be smaller than six (details can be seen in
Keedwell, 2003). Therefore this restriction can reduce the complexity of
the genetic approach by maintaining a distinction between the regulating
and regulated genes in the data-set. Each regulated gene value at time
t = 1 must be considered as some combination of, at most, six regulating
genes at time t = 0. By using the GA to evaluate each regulated gene
in turn rather than the entire set, the chromosome size is reduced to
a maximum of six integers for each regulated gene. The optimization
for a regulated gene takes place until such time as a satisfactorily low
error is achieved or a limit on the number of iterations is reached. The
algorithm then moves to the next regulated gene in the network, and
the process is repeated. This occurs, in turn for all genes in the network,
which therefore allows running times to increase linearly with respect to
the number of genes considered.

So far, the approach uses only the GA, but there is a difficulty with
using solely GAs in this approach. Experiments were conducted on the
rat spinal cord dataset (Spellman et al., 1998) where the output of the
generated network was compared with the actual gene expression data.
It was shown that, while the GA performed well initially with a good de-
crease in error, as the optimization progressed and the genetic algorithm
began to converge, the error would stop at levels as high as 16 per cent. It
was considered at this point that the combination and generation of new
weights in the network was the problem. The GA was quickly finding a
set of genes, but the floating point weights that were generated were being
optimized very slowly. Therefore another method was considered to gen-
erate the weights for the network, namely, the gradient descent method
employed in neural networks. The gradient descent algorithm was well-
suited to minimizing the difference between two sets of floating-point
variables, and the weights could be added to the network structure. This
‘neural-genetic’ approach made use of the attributes of both algorithms.
The GA was used to discover those genes that were important in the

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

NEURAL-GENETIC ALGORITHM 259

Generate
putative genes

K value

98 89 7 560

0.2 1.0 0.1 0.6

Iterate
gradient
descent

Iterate
genetic

algorithm

0.0Input data

Output data 0.2

0.417 − 0.2 = 0.217

Fitness = RMSE()

Repeat for each gene in the dataset

Compute
error

Compute
fitness

Neural element

Figure 11.1 The execution of the neural-genetic approach (RMSE = root mean
squared error)

regulation of the gene in question in an efficient manner, whereas the
neural network was used to minimize the difference between the input of
the genes selected and the expression levels of the regulated gene quickly.
Figure 11.1 shows the architecture of the hybrid neural-genetic approach.
The GA chromosome finds a set of candidate genes for regulation of the
current regulated gene. This data is then selected from the data base and
the neural network is used to minimize the difference between the reg-
ulating genes and the regulated gene output. The error from the neural
network is then returned to the GA as the fitness of the chromosome. The
GA can then use the genetic operators to discover more optimal sets of
genes. In this way, both those important genes and the weights for those
genes for entry into the regulatory network can be determined.

The technique used the sigmoid function backpropagation equations
as described in Chapter 7 and was trained on the rat spinal cord dataset

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

260 HYBRID METHODS

which consists of 112 genes over eight timesteps taken from the spinal
cord during the development of the rat. Using a k-value of four (restricting
the genetic algorithm to a maximum of four genes to regulate any other
gene), the resulting network was able to reproduce the training data to
some 97.6 per cent accuracy. This experiment suggested that the neural-
genetic approach was capable of extracting regulatory interactions from
microarray time series data with efficiency and that it could discover
networks from gene expression data consisting of thousands of genes
within a few hours. Additional experiments on artificial time series data
showed that it could discover gene interactions that were embedded in
Boolean data.

The approach can also be used for classification analysis with only
some minor modifications. In some ways, a classification problem can be
seen as a similar problem to that of regulation in that a set of genes must
be discovered which account for the variation in classification, much the
same way as they must be discovered to determine the variation in a
gene value. Therefore a ‘network’ can be created which links a set of
genes with the classification (i.e. ‘diseased’ or ‘not diseased’). However,
the classification normally consists of a small set of possible values, and
these can be decomposed into a set of binary attributes.

Table 11.1 shows the conversion process from three discrete classes
to the field representation. Each potential class has a space in the field
which takes the value 1 if the class is selected and 0 otherwise. When
combined with the absence–presence model given as an option in most
gene expression datasets, the algorithm can be used to find those genes
which are ‘regulating’ the classification shown in the training data. In
addition to this, some minor changes are required to the backpropagation
component to reduce the granularity of the weights that are discovered
in comparison with the approach used for regulatory networks. This
is due to the fact that floating-point weightings for attributes do not
make sense for classification in the same way as they do for regulatory

Table 11.1 Conversion of classes into enumerations and then a
field representation

Classification Enumeration Conversio

Acute lymphoblastic leukaemia 1 1,0,0
Acute myeloid leukaemia 2 0,1,0
Unknown 3 0,0,1

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

NEURAL-GENETIC ALGORITHM 261

networks. To achieve this increased granularity, the neural network uses
the step function rather than the sigmoid function used in the regulatory
networks. The result is a rule which classifies a single class by naming
a number of attributes and associated weights for each attribute. This
allows a number of attributes (genes) to be involved in the classification,
but weighted according to their influence. A large number of candidate
rules are generated during the optimization process, so the final rule is
selected firstly according to accuracy, then by parsimony and finally by
test accuracy.

An example of the rules generated by this approach on the multiple
myeloma dataset can be seen here.

Rule: 537

L18972 at AC = P -2

X16416 at AC = P -3

X16832 at AC = P 2

X57129 at AC = A 3

L36033 at AC = A -3

-> normal

0/22

TestError: 1:9

Rule: 2796

M63928 at AC = P -2

X16416 at AC = P 3

U40490 at AC = A 1

M33195 at AC = P -1

L36033 at AC = A 2

-> myeloma

0/42

TestError: 1:31

where A = absent and P = present. Therefore a positive weight indicates
that this attribute in its indicated state (present or absent) is required
to classify the data. Larger weights indicate more influence on the clas-
sification of the dataset. The figures after each rule indicate that they
classify the training data with no misclassifications, but that one case
in each of the test sets is misclassified. This result was considerably bet-
ter than that discovered by See5 on the same dataset, although only the
standard options were used. More results on a variety of datasets can be
found in Keedwell (2003), including an investigation into the biological
plausibility of a variety of the discovered genes.

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

262 HYBRID METHODS

Conclusions

The advantages of combining the GA and the neural network in this
manner are the speed of execution and the flexibility of the final solu-
tions generated by the algorithm. By generating a segment of the regula-
tory network for each regulated gene in turn, the GA can concentrate on
discovering the correct combination of genes and the neural element ef-
fectively minimizes the difference between the expression values of each
of the genes. An additional feature of this approach is that the regula-
tion of single genes can be determined in isolation, if required, yielding
the possibility of just-in-time regulation discovery. A biologist may be
interested in the regulatory interactions of a handful of genes, and this
technique would allow the biologist to select those genes of interest as
well as execute the algorithm on just those of concern. The approach uses
the current biological constraints, namely, the necessary sparsity of gene
regulator networks, to its advantage. Both elements of the technique are
limited: the GA by the k-value and the neural network by a maximum
weight value. This goes some way towards ensuring that a sub-optimal
selection of genes cannot be compensated for by the selection of weights.
The flexibility of this approach is shown in that, by making these small
adjustments, the neural-genetic model can be converted to operate either
on temporal or classificatory data. The resulting weighted classification
models are unusual in their make-up but provide the biologist with some
notion of the importance of each of the genes in classification. This is not
normally the case with decision tree or other classification algorithms.
The neural-genetic approach shows the advantage of combining two al-
gorithms that have contrasting properties for the study of microarray
data.

11.3 Genetic algorithm and knearest
neighbour hybrid for biochemistry
solvation

A further GA-based technique, the work of Peterson, Doom and Raymer
(2004), considered the use of a hybrid of a standard GA (discussed in
Chapter 8 of this book) and a k nearest neighbour technique (discussed
in Chapter 5). This approach was applied to the problem of classify-
ing water molecules according to whether they were displaced when a

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

GENETIC ALGORITHM AND k NEAREST NEIGHBOUR HYBRID 263

ligand (such as a drug or other molecule) attached itself to the surface of
the protein. Therefore extracting meaningful, accurate knowledge about
this problem could provide an insight into the behaviour of drugs when
binding to the protein surface that could assist drug designers.

GA-Knn method

The genetic algorithm k nearest neighbour (GA-Knn) method makes use
of a cosine-based Knn classification. This is slightly different from normal
Knn classification in that each of the features in the data-set is weighted
and the final classification predicted by the system for a new example
is the sum of those weights. In this two-class example, a positive sum
indicates one class and a negative sum, another. These weights are opti-
mized by the GA by using the first N (where N is the number of features)
elements of the chromosome to evolve the weights for classification. This
constitutes the first section of optimization for the technique. The second
N points of the chromosome are involved with changing the point of ori-
gin for the Knn classifier. When predicting the class of a new solution, the
Knn classifier compute the ‘nearest neighbour’ based on the angle created
when plotting a solution in two feature dimensions, between the origin
and the test point. The similarity between the angle of the test point and
points in the training set determines the nearest neighbour classification.
However, if the origin is changed in one or both axes, a more optimal
set of neighbours could be found. This constitutes the second part of the
chromosome, where N points determine the offset of the origin for each
feature. Finally, the k value for the Knn classifier is determined as a sin-
gle integer at the end of the chromosome. Therefore the GA is involved
with optimizing the weight, offset and k values for the cosine-based Knn
classifier.

Classification results

The authors compared their technique against a suite of other techniques
known as WEKA (including decision tree, neural network and rule in-
duction algorithms) on the problem of ligand-binding water conserva-
tion. The GA-Knn hybrid method was compared with the WEKA meth-
ods by determining the accuracy of the top three runs of the method
in comparison with the top three techniques taken from the WEKA

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

264 HYBRID METHODS

suite on the water conservation dataset. The dataset itself contained
5542 water molecules of which 3405 were conserved when the ligand
docked and 2137 were displaced, taken from measurements of 30 sep-
arate proteins. Each water molecule was represented by eight measured
features:

1 the number of protein atoms which surrounded the water molecule,

2 the frequency with which the atoms surrounding the water molecule
were found to bind to water molecules in another database of pro-
teins,

3 thermal mobility,

4 the number of hydrogen bonds between the water molecule and the
protein,

5 the number of hydrogen bonds to other water molecules, and

6,7 and 8 three additional temperature factors of either the molecule
itself or the neighbouring atoms.

The task for the algorithm was to distinguish between those molecules
that would be displaced or conserved when a ligand binds, based on these
eight measurements of the water molecule itself.

In addition to the accuracy percentage from the experiment, the au-
thors also recorded the balance of the classification. Many techniques
classify one class with greater accuracy than the others by concentrat-
ing on the most frequent class. This approach often yields information
of limited use, since the more frequent class was also often the least
interesting. (This had been noted especially in areas such as credit-risk
analysis where the vast majority of credit card holders were trustworthy
and constituted the larger class, whereas the company wished to identify
the credit-risks.) The balance measure was designed to rate the classifi-
cation according to how well balanced the classification was over all the
classes. The top three GA-Knn runs achieved accuracy similar to those
from the WEKA model (between 64 and 66 per cent), but with much
better balance, indicating that the interactions discovered by GA-Knn
were more interesting. These results showed that the important features
that were weighted most strongly by the GA-Knn classifier were those
which related to the thermal mobility of the molecules.

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

GENETIC PROGRAMMING NEURAL NETWORKS 265

Conclusion

This study provided a good example of how GAs could be combined
with another technique to produce good classification results both in
the accuracy and transparency of the obtained results. This application
differed from the neural-genetic approach described above in that the
GA was used to modify the parameters of a standard classification tech-
nique. The hybridization of the two algorithms aims for the GA to pick
good weight and offset sets for the Knn to use and classify the exam-
ples. The GA could be viewed as ‘tuning’ the parameters of the classifier
whereas in the neural-genetic approach it was directly involved in the
knowledge discovery process. The results shown by Peterson, Doom and
Raymer (2004) were encouraging, especially in that the classification was
well balanced. The balance of the final classification was all-important
in datasets where the two classes were not equally represented –
quite often the case in real-world problems including those in bioin-
formatics. Finally, while the accuracy was similar between this and the
established techniques, the WEKA system used a cross-validation tech-
nique (see Chapter 5 for more on this), whereas the GA-Knn approach
was evaluated using bootstrapped data. The accuracy of bootstrapped
data can be different from that where a test-set is used (either in cross-
validation or standard testing), as the same example can appear numer-
ous times in each dataset. Still, this example neatly showed the advan-
tages of using a hybrid system for a specific and pressing problem in
bioinformatics.

11.4 Genetic programming neural networks
for determining gene -- gene
interactions in epidemiology

This approach by Ritchie et al. (2003, 2004) combines two techniques
seen separately in other chapters of this book. Genetic programming (de-
scribed in Chapter 9) is combined with neural network theory (Chapter
7) to predict the probability of disease based on the observed genetics
of individuals with and without the disease. This study is different from
those described above in that the data is entirely artificial. No real bi-
ological data is used to validate the model, but the principles used in
generating the data do have biological plausible roots. The approach
highlights yet another useful combination of techniques.

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

266 HYBRID METHODS

Genetic programming neural networks (GPNN)

Originally suggested by Koza and Rice (1991), GP neural networks com-
bine the functional optimization methodology of GP but within stricter
bounds than normal. Standard GP, without restriction, can evolve any
set of operators and terminals that satisfy the problem, although often
restrictions are placed on the total size of the tree that can be created (to
restrict bloat). However, GPNN restricts the type of structure which can
be evolved, rather than the size, so that the final tree resembles a standard
neural network. The operators are determined as a weighting function
and an activation function. In addition to this, the terminal set is defined
as a set of floating-point values (for use in the operator functions) and the
input variables gained from the database. The restrictions placed on the
GP ensure that the root node always represents the output of the neural
network, and that an activation function and weighting functions must
directly descend from the root node. Beyond this, however, the algorithm
is free to select from the operator and terminal set. This allows the GP
element to optimize a neural network structure that minimizes the dif-
ference between output and desired response. There is no requirement
for the network to use backpropagation or any other gradient descent
learning method to determine the weights in the network, as these are
determined during the optimization process.

Discovering gene-gene interactions
in simulated data

The authors used their approach to determine, from a set of single-
nucleotide-polymorphisms (SNPs), those functional polymorphisms
which are implicated in a particular disease. The data is simulated so
that each of the 400 data records (constituting 200 cases of the ‘disease’
and 200 controls) contains two or three functional polymorphisms and
a further eight or nine polymorphisms to make 10 for each record. The
probability of developing the disease is reflected by using a table of pen-
etrance function values. All of the data in the experiment requires that
at least two of the polymorphisms interacted with each other to create
increased susceptibility to disease. None of the effects seen in the data
could be determined solely by a main effect of one of the genes. The au-
thors state that this was particularly important for epistasis studies where
genes had little or no effect by themselves, but individuals who possessed

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

GENETIC PROGRAMMING NEURAL NETWORKS 267

a certain pairing, or combination, of genes drastically increased their
chance of developing the disease.

A 10-fold cross-validation approach was used to determine the per-
formance of GPNN on the data. This involved generating 10 datasets,
training the approach on nine of them and then testing on the remain-
ing one. This was repeated for the 10 possible combinations of training
and test sets. The task for the GPNN model is to determine the inter-
action of the genes that have a combined effect and yield a diseased
or non-diseased individual to a greater or lesser degree depending on the
heritability of the genes. The authors computed ‘power’ to be the number
of times the correct SNPs were discovered with greater cross-validation
consistency than the other SNPs in the dataset. The GPNN approach was
applied to a number of datasets, with a varying number of genes, allele
frequencies and heritability scores. These 20 datasets give a good cross
section of the possible datasets as each of the significant parameters is
modified systematically. As would be expected, the performance of the
GPNN is dependent on the type of model used to generate the data. The
GPNN solutions varied from 100 per cent to 1 per cent over 20 datasets,
whereas the performance for the comparison technique, stepwise logistic
regression was 0 per cent in all cases. The GPNN approach appears to be
significantly more capable in determining which SNPs were responsible
for the disease under a number of conditions.

The GPNN approach was able to extract the functional polymor-
phisms from the data, dependent on the level of effect seen in the phe-
notype (this was denoted as heritability). The comparison technique,
stepwise linear regression, was unable to determine any of the functional
groups over the dataset.

Conclusions

The GPNN technique had been shown to accurately extract, for a certain
dataset, the functionally active SNPs from artificial data which had been
created to closely resemble biological data. The approach made use of the
ability of GP to discover good near-optimal solutions for this problem.
However, the reasons behind the use of GP neural networks is never de-
scribed beyond the fact that other researchers had used neural networks
for this task. There appeared to be no problem-specific reason for the GP
method to be restricted to a neural network style representation, as the
neural network approach could prove to be more restrictive than simply
using genetic programming. Also, the choice of comparison technique,

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

268 HYBRID METHODS

in stepwise logistic regression (which failed to determine any of the func-
tional polymorphisms) did not appear to validate the GPNN approach
greatly, although the authors stated that it was frequently applied in the
field of human genetics. A favourable comparison of the hybrid technique
with either of the established single techniques could perhaps enhance
this application and the idea of GPNN. However, this application did
show a further successful hybrid technique which delivered improved
results over the currently used method.

11.5 Application guidelines

Hybrid techniques are not necessary, or even desirable, for all bioinfor-
matics applications. As described previously, the loss of generality when
considering a hybrid means that any advances gained in the application
may not be applicable to other problem domains. Typically, hybrids are
constructed where one algorithm is lacking in some respect and another
can be used to compensate for this shortfall. For instance, the compu-
tational requirement for genetic algorithms to find an optimal set of
floating-point values is often far greater than that required by a neu-
ral network so a hybrid may be beneficial. Similarly, a neural network
structure is difficult to interpret whereas a GA chromosome, generally
speaking, is not and therefore this property may be an advantage. In
general then, the application itself must drive the use of a hybrid algo-
rithm, in that the computational capability or need for transparency of
the problem exerts demands that one single algorithm cannot meet.

11.6 Conclusions

The hybrids shown in this chapter all include some element of evolution-
ary computation and this is because they naturally lend themselves to
being part of a hybrid. As described earlier, the flexibility of evolutionary
computing makes these algorithms favourable to hybridization. In addi-
tion to this, they make use of a symbolic representation, and efficiently
utilize the computing resources available.

The above approaches have shown that there are a practically lim-
itless number of ways in which the intelligent approaches described in
this book can be combined. The hybrids shown here often outperform
their single-algorithm counterparts, or are more applicable to the bioin-
formatics problem being solved. This increase in performance though

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

REFERENCES AND FURTHER READING 269

is often tempered by the fact that the nature of hybrid algorithms, and
particularly their high degree of specialization, mean that the problem-
independence which the single techniques possess does not transfer to
the hybrid technology. Nevertheless, hybrid approaches are becoming
more and more popular as the number of researchers using the standard
techniques increases.

11.7 Summary of chapter

1 Hybrid algorithms can be used to solve a variety of problems in bioin-
formatics.

2 The hybrid algorithm often improves on either a single algorithm, in
terms of performance, or in the transparency of its results.

3 There are numerous ways in which algorithms can be combined, but
the method selected is often determined by the problem formulation.

4 Evolutionary algorithms are popular for constructing hybrid models
due to the ease with which they can be combined with other methods.

11.8 References and further reading

Keedwell, E. (2003) Knowledge Discovery from Gene Expression Data Using
Neural-Genetic Models, PhD Thesis, University of Exeter, Exeter, UK. Available
from http://www.ex.ac.uk/∼eckeedwe.

Keedwell, E. and Narayanan, A. (2003) Genetic algorithms for gene expression anal-
ysis, in Applications of Evolutionary Computing LNCS 2611 (eds G. Raidl et al.).
Proceedings of EvoBIO2003 1st European Workshop on Evolutionary Bioinfor-
matics, pp. 76–86.

Koza, J.R. and Rice, J.P. (1991) Genetic Generation of Both the Weights and Ar-
chitecture for a Neural Network. IEEE International Joint Conference on Neural
Networks, 1991, Vol II, pp. 397–404.

Peterson, M., Doom, T. and Raymer, M. (2004) “GA-facilitated knowledge discovery
and pattern recognition optimization applied to the biochemistry of protein sol-
vation” Proceedings of ACM Genetic and Evolutionary Computation Conference
(GECCO) 2004, Seattle WA, pp. 426–437, June 2004.

Ritchie, M.D., White, W.C, Parker, J.S. et al. (2003) Optimization of neural network
architecture using genetic programming improves detection and modeling of gene–
gene interactions in studies of human diseases. BMC Bioinformatics 2003, Vol. 4.
Available from http://www.biomedcentral.com/1471-2105/4/28.

JWBK023-11 JWBK023-Keedwell March 31, 2005 3:54 Char Count= 0

270 HYBRID METHODS

Ritchie, M.D., Coffey, C.S. and Moore, J.H. (2004) Genetic Programming Neural
Networks as a Bioinformatics Tool for Human Genetics. Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO 04), in Lecture Notes
in Computer Science 3012 (LNCS 3012) (eds Deb et al.) Vol 2, pp. 438–448,
Springer.

Spellman, P., Sherlock, G., Zhang, M. et al. (1998) Comprehensive identification
of cell cycle-regulated genes of the yeast Saccharomyces cerevisial by microarray
hybridization. Mol. Biol. Cell, 9, 3273–3297.

JWBK023-IND JWBK023-Keedwell April 1, 2005 20:53 Char Count= 0

Index

Note: Figures and Tables are indicated by italic page numbers, footnotes by
suffix ‘n’

A∗ algorithm 80–3
time complexity 84

ab initio methods, protein folding
prediction by 54–5

activation functions, in neural
networks 176

adaptive response 61
Affymetrix gene chips 43, 44,

45
algorithm, meaning of term 67
alignment tools/methods 33
alleles 8, 23
alphabet, for DNA 90
amino acids, abbreviations listed

19
antibodies 61
antisense technology 58
anti-sense (template) strand 14
apoptosis (cell death), modelling of

molecular reaction pathways
using cellular automata
249–51

automata theory 91–4
automaton

expressions accepted by 87–9
grammar for 89–90
graph as 86–7
more-powerful 93–6

B-lymphocytes 61
backpropagation learning approach,

in neural networks 180–2,
259–60

bacteria, classes 7
bacteriophage 59
Baltimore Classification (of viruses)

59
basal promoters 25
Bayes’ Theorem 105–11

advantages 106, 108
applications in bioinformatics

115–16
and false positives 110–11
and new evidence/information

108–10
Bayesian networks 111–16
beam search 75–6
belief networks 111–15
bioinformatics, examples 27–8
bioinformatics applications

Bayes’ Theorem 115–16
clustering 135–44, 145
genetic algorithms 210–16
genetic programming 232–6
graphs 86–9
hidden Markov models 124–5
identification trees 163–9

271

JWBK023-IND JWBK023-Keedwell April 1, 2005 20:53 Char Count= 0

272 INDEX

bioinformatics applications
(Cont.)

nearest neighbour method 127–9,
130–2

neural networks 187–92
Bioinformatics Toolbox 145
bit representation for genetic

algorithms 209
bloat, in genetic programming

229–30
blue cell tumours, neural networks

used for classification 190
bootstrapping, compared with

cross-validation 265
branch-and-bound search 77–80
breadth-first searching 69, 70, 71

C4.5(identification tree) software
152, 163, 169

CAAT box 11, 13
cancer 26–7

classification of by using diagnosis
data 167–8

carcinogens 26–7
CART (Classification And Regression

Trees) software 163
CASP3 protein dataset 169
catalytic proteins 50
CB396 protein dataset 169
Celera Genomics 9–10
cell architecture 3–4
cell regulation 26

and cancer 26–7
cell types 7–8
CelLab, cellular automata resources

246
cellular automata (CA) 239–53

application guidelines 245–6
background 251–2
bioinformatics applications

247–51
apoptosis reaction network

249–51
enzyme kinetics 247–9

classes 244
data structures in example 249–50

general applications 240
‘glider’ phenomenon 241–2
grid of cells 239, 240–1
method 239–45
restrictions on technique 244
software 246
state transition rules 239–40,

241–4
probabilistic rules 243
second-order rules 243

‘central dogma’ 21–3
chromatin 5
chromosome 5

meaning of term in genetic
algorithms 196

cis element (DNA sequence) 25
classes of problems 96–7
classification 147–9

of cancer by using diagnosis data
167–8

examples of uses 148, 167
identification trees used 149–50

classification algorithms 148
classification analysis 257, 260
classification model 148
classification (taxonomy) scheme(s)

35
computational costs 35–6

cloning 14
cluster analysis

Euclidean distance approach
139–40

Manhattan method 140
cluster diagram 137, 138
Cluster software 144
clustering 135–44

advanced techniques 138–44
algorithms 145
application guidelines 144–5

clusters of genes 138–44
codons 15, 16
committee of trees, use in

classification of cancer 167–8
comparative modelling, protein

folding prediction by 53–4
complementary copy of gene 14

JWBK023-IND JWBK023-Keedwell April 1, 2005 20:53 Char Count= 0

INDEX 273

complementary DNA (cDNA) 41–2
complexity of search 84–6
concept learning systems 170
conditional probability

compared with frequentist
probability 103–4

compared with joint probability
105

confocal array scanners 44
conformation matrix 133
conformation prediction table

134
consensus method, for secondary

protein structure prediction
168–9

consistency heuristic 130
continuous data, identification tree

algorithm used 154–5
Conway, John 241
crossover operators

in genetic algorithms 199–200
single point crossover 199
uniform crossover 199–200

in genetic programming 225–6
cross-validation

compared with bootstrapping
265

in identification trees 161–2
in neural networks 186, 267

data mining 157
genetic programming used for

drug discovery 232–4
data structure 67, 68, 73
database management 28
decision tree algorithms 150

example of use 153–4
decision tree software 162–3,

169–70
decision trees 147–71

in nearest-neighbour method 129,
130, 131–2

see also identification trees
DEFINE algorithm 168
deoxyribonucleic acid (DNA) 4–7
dependent events 104–5

depth-first searching 71–2
Dicer enzyme 62
directed graphs 65
Discipulus software 232
DNA arrays 41–4

types 43
see also gene chips; microarrays

DNA chips see gene chips
DNA codons 15
DNA mismatch repair system 22
DNA polymerase 22
dominance of solutions, in

multi-objective genetic
algorithms 205–7

dominant genes 22–3
double-helix structure of DNA 6–7
drug discovery, genetic programming

used in data mining for
232–4

DSSP approach 168

Eisen Software 144
electrophoresis 56
elitist genetic algorithms 209
embryonic stem cells 48–50
enhancers 25
enzyme kinetics

cellular automata model for
247–9

breaking (water temperature)
parameter 248

enzymes 23–4
epidemiology, gene–gene interactions

in, hybrid method used to
determine 265–8

ethical considerations, stem cell
research 48–50

Euclidean distance approach, in
cluster analysis 139–40

eukaryotic cells 7
evolutionary computation see genetic

algorithms; genetic
programming

Evolver software 210
exons 15
expression, meaning of term 87

JWBK023-IND JWBK023-Keedwell April 1, 2005 20:53 Char Count= 0

274 INDEX

false positives, and Bayes’ Theorem
110–11

finite-state automaton (FSA) 89, 91,
92–3

compared with push-down
automata 93, 94

fitness evaluation
in genetic algorithms 196
in genetic programming 224–5

fold recognition (or threading)
techniques, protein folding
prediction by 54

foothills (in searches) 83
frequentist probability, compared

with conditional probability
103–4

gain criterion 151–4
gain ratio 156–7
GALib software 210
gel electrophoresis 56
gene chips 43

size of probe cell 44
gene clustering 138–44
gene expression analysis 47–8,

256–7
clustering methods for 138–44
ethical considerations 48–50
neural networks for 188–91
neural-genetic algorithm for

257–62
gene expression databases 257
gene–gene interactions, hybrid

method for determining
265–8

gene regulation 25–6
gene regulatory networks 47,

210–12
computational complexity 212
graph representation 212, 213
matrix representation 212–13
reverse engineering of 47–8,213

genetic algorithms used 213–15
gene silencing 61–2, 63
generalization, by neural networks

173
generational genetic algorithm 201

genes 8–9
amino acid translation 20
number in human genome 10, 22
and proteins 10–21

genetic algorithm k nearest neighbour
(GA-Knn) method 262–5

classification results compared with
WEKA techniques 263–4

genetic algorithms (GAs) 195–217
application guidelines 207–10
bioinformatics applications

210–16
multiple sequence alignment

215–16
reverse engineering of regulatory

networks 210–15
compared with genetic

programming 221, 230
conditions for applying GAs to

problems 208
dominance of solutions in

multi-objective GAs 205–7
generational vs steady-state

201–2
hybrid methods

with k nearest neighbour method
262–5

with neural networks 257–62
implementation 209–10
meaning of ‘chromosome’ 196
multi-objective 205–7
operators 197–201

crossover operator 199–200
mutation operator 200–1
selection operator 197–8

representations of problems
208–9, 213–14

selection of algorithms 2–9
single-objective

example 202–5
method 195–202

‘genetic code’ 17–18
genetic programming (GP) 221–37

algorithm 222–8
crossover operator 225–6
fitness evaluation 224–5
mutation process 226–7

JWBK023-IND JWBK023-Keedwell April 1, 2005 20:53 Char Count= 0

INDEX 275

selection techniques 225
tree interpretation 227–8
tree representation 222–4

application guidelines 230–2
background 236
bioinformatics applications 232–6

data mining for drug discovery
232–4

functional genomics in yeast data
234–6

bloat in 229–30
compared with genetic algorithms

221, 230
general applications 221–2,

231–2
hybrid method, with neural

networks 265–8
method 221–30
operators 222

selection of 231
Polish notation used 228–9
software 232
terminals 222

selection of 230–1
genetic programming neural networks

(GPNN) 265–8
gene–gene interactions

determined using 266–7
Genetic Programming Notebook

232
genome(s)

meaning of term 9
phylogenetic analysis 34–40
sequence analysis 31–4

global alignment 33
‘graceful degradation’, in neural

networks 173–4
grammar 89, 90–1

meaning of term 99
graph theory 65
graphs 65, 66

algorithms for search of 66–72
as automata 86–7
heuristic search methods 72–6
matrix representation 67, 68, 73,

88
use in bioinformatics 86–90

Hamming distance 32
helper T-cells 61
Hennig Argumentation 36–7
hepatitis C virus (HCV), protease

cleavage prediction 165,
166

heuristic, meaning of term 72
heuristic search methods 72–6

beam search 75–6
compared with optimal search

procedures 76
with distance remaining metric

73
hill-climbing 74–5

hidden Markov models (HMMs)
118–24

advantages 124
applications in bioinformatics

124–5
benefits 123
construction of 119–23
definition 119n[1]
delete states 119
insert states 119
match states 118, 119

hierarchical clustering 138, 144
high-throughput peptide sequencing

57
hill-climbing 74–6

simple 74–5
steepest-ascent 75

HIV protease cleavage prediction,
identification trees used
163–6

HIV virion 59–60
Holland, John 236
Human Genome Project (HGP)

9–10
hybrid methods 255–70

application guidelines 268
genetic algorithm with k nearest

neighbour technique 262–5
genetic programming with neural

networks 265–8
methodology 255–6
neural-genetic algorithm 256–62
ways of hybridization 255–6

JWBK023-IND JWBK023-Keedwell April 1, 2005 20:53 Char Count= 0

276 INDEX

identification tree algorithm 150–1
example of use 153–4, 155

identification trees 147–71
advantages 159–60
application guidelines 160–3
background 169–70
bioinformatics applications

163–9
classification of cancer 167–8
HIV and HCV protease cleavage

prediction 163–6
secondary protein structure

prediction 168–9
cross-validation of data 161–2
disadvantages 157–9
method 147–51
pruning of 158–9
software 162–3, 169–70
use in classification 149–50

immune system 60–2
in silico methods of protein structure

prediction 55
independent events 104
innate response 60–1
intercellular architecture 3–4
interference technology 57–8,63
intracellular architecture 3
introns 15, 16

joint probability, compared with
conditional probability 105

JPRED (consensus) method 169

k nearest neighbour (Knn) method
132

hybrid method, with genetic
algorithms 262–5

‘knock-out’ technology 58
Kohonen self-organizing maps

(KSOMs) 177–8, 182–5
algorithm 184
example of use 191–2
feature map 178, 184

Koza, John 221, 231, 236

labelled arcs 66
labelled nodes 65

languages, meaning of term 90, 91
learning, by neural networks 174–5
‘leave-one-out’ cross-validation

technique 161–2
example of use 191–2

Levenshtein Distance 34
‘life’, as example of cellular automata

approach 241–3
linear-bounded automaton (LBA)

95
Linnaean binomial classification

system 35
local alignment 33
log-odds scoring 123–4
log2 ratios 44
looped structures in RNA 91–2
lymphocytes 61

machine learning
cross-validation of data required

161
see also identification trees

macrophages 61
major histocompatability (MHC)

molecules 61
Manhattan method, in cluster

analysis 140
maps, representation as graphs

66–99
Markov networks 116–25

see also hidden Markov models
matching coefficients, in clustering

136
Matlab, clustering algorithms 145
matrix representation, graphs 67,

68, 73, 88
melanoma 27
memetic algorithms 255

see also hybrid methods
microarrays 43

classification analysis of 257
temporal analysis using 257

mitotic cell division 26
molecular biology, basis 3–29
Moore neighbourhood (in cellular

automata) 240, 241
example of use 249

JWBK023-IND JWBK023-Keedwell April 1, 2005 20:53 Char Count= 0

INDEX 277

mRNA (messenger RNA) 11, 21–2
multi-layer perceptrons 174

first discussed 192
learning rule 180–1

Multi-Objective Genetic Algorithm
(MOGA) 209

multi-objective genetic algorithms
205–7

elitist 209
multiple myeloma data, classification

analysis of 188–90, 261
multiple sequence alignment, genetic

algorithms used 215–16
multiply comparison of strings 33
multipotent cells 48, 49
mutation operator

in genetic algorithms 200–1
in genetic programming 226–7

‘naı̈ve’ Bayesian approach 114
nearest neighbour method 130–2

application guidelines 144, 145
example of clinical application

127–9
for protein folding prediction

132–5
neural networks 173–93

application guidelines 185–7
architecture 174, 177–8
background 192–3
backpropagation learning rule

180–2, 259–60
bioinformatics applications

187–92
gene expression analysis

187–91
protein subcellular location

191–2
drawbacks 185–7
‘epochs’ 179
hybrid methods

with genetic algorithms 257–62
with genetic programming

265–8
implementation 187
learning by 174–5
method 173–85

multi-layer perceptron learning rule
180–2

overtraining by 185–6
perceptron learning rule 179–80
units and weights in 175–6

Neural Wizard software 187
neural-genetic algorithm 256–62
neuron, in neural network 175
Neurosolutions software 187
new evidence/information, and Bayes’

Theorem 108–10
Non-dominated Sorting Genetic

Algorithm 2 (NSGA-II) 209
NP (non-deterministic polynomial)

class of problems 96
NP-complete class of problems 96–7
nucleotides 6

O notation 85
objective function (in genetic

algorithms) 196
ontology 28
optimal alignment 34
optimal search procedures 76–83

branch-and-bound search 77–80
compared with heuristic search

methods 76
optimality procedures, in

phylogenetic analysis 39–40
organelles 3, 4
overfitting of data

by identification trees 157–8
by neural networks 185–6

P (polynomial) class of problems 96
P-CURVE method 168
pairwise comparison of strings 33
Pareto-front (in multi-objective

genetic algorithms) 207
parse trees, in genetic programming

221, 223, 224
conversion to Polish notation

228–9
‘full’ initialization operator 224
‘grow’ initialization operator 223
interpretation 227–8
representation 222–4
sub-trees 225, 226

JWBK023-IND JWBK023-Keedwell April 1, 2005 20:53 Char Count= 0

278 INDEX

parsimony principle (in phylogeny)
34–5, 39–40

pathogens 60
cancer-causing 27

peptide sequencing 57
peptide-mass fingerprinting 56–7
perceptrons 174

first discussed 192
learning rule 179–80

perfect-match/mismatch strategy 44
phagocytes (scavenger cells) 60
phylogenetic trees 36–40

Hennig Argumentation method
36–7

Wagner method 37–9, 40, 41
phylogeny 34–40

outgroup organisms 39
plateaux (in searches) 83–4
pluripotent cells 48, 49

methods for developing 49–50
Polish notation 228–9
polymorphisms 10
polypeptide chains 19–21
polypeptide sequences 51
posterior probability 106
probabilistic approaches 103–26
probabilistic networks 116
probabilistic transition matrix 116,

117
probability theory 103–5
probability trees 106–8, 107,109
prokaryotic cells 7
promoters 25
proproteins 56
proteases 56, 60
protein electrophoresis 56
protein folding 50–5

prediction methods
ab initio methods 54–5
comparative modelling approach

53–4
fold recognition (or threading)

techniques 54
nearest neighbour method

132–5
protein identification 55–7

protein misfolding 50
diseases caused by 55

protein sequences 51
protein structure

methods of determining 51
primary structure 51, 52
quaternary structure 52, 52
secondary structure 51–2, 52, 53,

168
prediction of 132–5, 168–9

tertiary structure 52, 52
protein subcellular location, neural

networks used 191–2
proteins 23–4, 50

and genes 10–21
unfolding/denaturation of 50, 51

proteome 18, 50–7
proteomics 18, 57
proto-oncogenes 27
protogene, in gene clustering 141
pruning of trees

identification/decision trees
158–9

search trees 80–2
push-down automaton (PDA),

compared with finite-state
automatan 93

Quinlan, Ross 156, 158, 163,
169–70

realistic gap models 34
recessive genes 22–3
recursion of looped structures 92
regular expressions 89
regulatory networks see gene

regulatory networks
replication 14

contrasted to transcription 14
reverse engineering 47–8

genetic algorithms used 210–15
ribosomes 16
ridges (in searches) 83, 84
RNA-inducing silencing complex

(RISC) 62–3
RNA polymerase 11, 19

JWBK023-IND JWBK023-Keedwell April 1, 2005 20:53 Char Count= 0

INDEX 279

ROC (receiver operating
characteristics) convex hull
approach 233

roulette wheel selector (genetic
algorithms) 197–8

rRNA (ribosomal RNA) 22

Saccharomyces cerevisiae, gene
expression data, genetic
programming used 234–6

search, meaning of term 65
search algorithms 66–72

drawbacks 83–4, 195–6
heuristically informed 74–6

search complexity 84–6
search techniques, with distance

remaining metric 73, 74,
80

problems encountered 83–4
search trees

branching factor 69–70
breadth-first approach 71
child nodes 68
depth-first approach 71–2
parent nodes 68
root of tree 68
sibling nodes 68

secondary protein structure prediction
consensus method used 168–9
nearest neighbour method used

132–5
See5(identification tree) software

152, 163, 169
compared with neural-genetic

algorithm (hybrid method)
261

example of use 165–6
selection operators (in genetic

algorithms/programming)
197–8, 225

roulette wheel selector 197–8
tournament selector 198

self-cells 61
self-organizing maps 177–8, 182–5

see also Kohonen self-organizing
maps

semi-decidable problems 95
sense (coding) strand 14
sensitivity analysis, in neural

networks 186–7, 190
Sequence Alignment Genetic

Algorithm (SAGA) 216
Sequence Alignment and Modelling

(SAM) program suite 119n[1]
sequence analysis 31–4

genetic algorithms used 215–16
hidden Markov models for 118

sequence expressions 87–9
sigmoid function 175–6, 179, 180,

213, 259
similarity matrix 133
similarity tree 137, 138
SIMPA (nearest neighbour) method

132–5
simple hill-climbing 74–5
single linkage clustering 144
single nucleotide polymorphisms

(SNPs), genetic variances
implicated by 46, 266

single-objective genetic algorithms
example of execution 202–5
method 195–202

siRNA (small interfering RNA) 62,
63

software
cellular automata 246
cluster analysis 144
genetic algorithms 210
genetic programming 232
identification/decision trees

162–3, 169–70
neural networks 187

solvation studies, GA-Knn hybrid
method used 262–5

splice variants 15
spliceosome 15
‘split information’ measure 156
spot technology (for microarrays) 43
SPSS Clementine software 162
state space search 65
state transition rules (in cellular

automata) 239–40

JWBK023-IND JWBK023-Keedwell April 1, 2005 20:53 Char Count= 0

280 INDEX

steady-state genetic algorithm 201,
202

steepest-ascent hill-climbing 75
stem cells 48–50
strings 32, 90
strong dominance (genetic

algorithms) 205–7
Stuttgart Neural Network Simulator

(SNNS) 187
substitution matrices 34
‘superstring’ problem 34
supervised data analysis

compared with unsupervised data
analysis 148

see also identification trees
supervised learning 175, 177

epochs in 179
perceptron learning rule 179–80
see also neural networks

TATA box 11, 13, 25
taxonomy 35
telomeres 26
temporal analysis 257
time complexity 84, 95
total linkage clustering 144
totipotent cells 48
tournament selector (genetic

algorithms) 198
trans elements (regulatory proteins)

25–6
transcription 4, 5, 11–15, 25

contrasted to replication 14
transcription factors 25
transcriptional regulation 25
transcriptome 15, 40–50
transcriptomics 15
transfer functions, in neural networks

176
translation 4, 5, 11, 16–19, 25
transmission electron microscopy

(TEM) 6
tree searches 67–72

breadth-first search 69, 70, 71
depth-first search 71–2

Treeview software 144

tRNA (transfer RNA) 16, 22
tumours 27
Turing Machine 95–6

Ulam, Stan 252
unit cost model 34
unsupervised data analysis

compared with supervised data
analysis 148

see also clustering; nearest
neighbour method

unsupervised learning 177, 182–5
see also Kohonen self-organizing

maps
unweighted pair group method with

arithmetic mean (UPGMA)
138

upstream promoters 25

viral integrase 60
viral protease 60, 163
viral reverse transcriptase 60
virions 59
viruses 59–60
visualization of protein secondary

structure 51–2, 53
visualization tools and techniques

28
von Neumann, John 251–2
von Neumann neighbourhood (in

cellular automata) 240, 241
extended version 247–8

Wagner Trees 37–9
water distribution networks,

optimization using cellular
automata technique 245–6

weighting of links, in neural networks
176

WEKA techniques, solvation
classification results compared
with GA-Knn method 263–4

Wilcoxon’s Signed Rank Test 46

yeast gene expression data, genetic
programming used 234–6

	Intelligent Bioinformatics
	Contents
	Preface
	Acknowledgement
	PART 1 INTRODUCTION
	1 Introduction to the Basics of Molecular Biology
	1.1 Basic cell architecture
	1.2 The structure, content and scale of deoxyribonucleic acid (DNA)
	1.3 History of the human genome
	1.4 Genes and proteins
	1.5 Current knowledge and the ‘central dogma’
	1.6 Why proteins are important
	1.7 Gene and cell regulation
	1.8 When cell regulation goes wrong
	1.9 So, what is bioinformatics?
	1.10 Summary of chapter
	1.11 Further reading

	2 Introduction to Problems and Challenges in Bioinformatics
	2.1 Introduction
	2.2 Genome
	2.3 Transcriptome
	2.4 Proteome
	2.5 Interference technology, viruses and the immune system
	2.6 Summary of chapter
	2.7 Further reading

	3 Introduction to Artificial Intelligence and Computer Science
	3.1 Introduction to search
	3.2 Search algorithms
	3.3 Heuristic search methods
	3.4 Optimal search strategies
	3.5 Problems with search techniques
	3.6 Complexity of search
	3.7 Use of graphs in bioinformatics
	3.8 Grammars, languages and automata
	3.9 Classes of problems
	3.10 Summary of chapter
	3.11 Further reading

	PART 2 CURRENT TECHNIQUES
	4 Probabilistic Approaches
	4.1 Introduction to probability
	4.2 Bayes’ Theorem
	4.3 Bayesian networks
	4.4 Markov networks
	4.5 Summary of chapter
	4.6 References

	5 Nearest Neighbour and Clustering Approaches
	5.1 Introduction
	5.2 Nearest neighbour method
	5.3 Nearest neighbour approach for secondary structure protein folding prediction
	5.4 Clustering
	5.5 Advanced clustering techniques
	5.6 Application guidelines
	5.7 Summary of chapter
	5.8 References

	6 Identification (Decision) Trees
	6.1 Method
	6.2 Gain criterion
	6.3 Over fitting and pruning
	6.4 Application guidelines
	6.5 Bioinformatics applications
	6.6 Background
	6.7 Summary of chapter
	6.8 References

	7 Neural Networks
	7.1 Method
	7.2 Application guidelines
	7.3 Bioinformatics applications
	7.4 Background
	7.5 Summary of chapter
	7.6 References

	8 Genetic Algorithms
	8.1 Single-objective genetic algorithms – method
	8.2 Single-objective genetic algorithms – example
	8.3 Multi-objective genetic algorithms – method
	8.4 Application guidelines
	8.5 Genetic algorithms – bioinformatics applications
	8.6 Summary of chapter
	8.7 References and further reading

	PART 3 FUTURE TECHNIQUES
	9 Genetic Programming
	9.1 Method
	9.2 Application guidelines
	9.3 Bioinformatics applications
	9.4 Background
	9.5 Summary of chapter
	9.6 References

	10 Cellular Automata
	10.1 Method
	10.2 Application guidelines
	10.3 Bioinformatics applications
	10.4 Background
	10.5 Summary of chapter
	10.6 References and further reading

	11 Hybrid Methods
	11.1 Method
	11.2 Neural-genetic algorithm for analysing gene expression data
	11.3 Genetic algorithm and k nearest neighbour hybrid for biochemistry solvation
	11.4 Genetic programming neural networks for determining gene – gene interactions in epidemiology
	11.5 Application guidelines
	11.6 Conclusions
	11.7 Summary of chapter
	11.8 References and further reading

	Index

